SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Boström Adrian) srt2:(2016)"

Sökning: WFRF:(Boström Adrian) > (2016)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boström, Adrian E., et al. (författare)
  • Longitudinal genome-wide methylation study of Roux-en-Y gastric bypass patients reveals novel CpG sites associated with essential hypertension
  • 2016
  • Ingår i: BMC Medical Genomics. - : Springer Science and Business Media LLC. - 1755-8794. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Essential hypertension is a significant risk factor for cardiovascular diseases. Emerging research suggests a role of DNA methylation in blood pressure physiology. We aimed to investigate epigenetic associations of promoter related CpG sites to essential hypertension in a genome-wide methylation approach. Methods: The genome-wide methylation pattern in whole blood was measured in 11 obese patients before and six months after Roux-en-Y gastric bypass surgery using the Illumina 450 k beadchip. CpG sites located within 1500 bp of the transcriptional start site of adjacent genes were included in our study, resulting in 124 199 probes investigated in the subsequent analysis. Percent changes in methylation states and SBP measured before and six months after surgery were calculated. These parameters were correlated to each other using the Spearman's rank correlation method (Edgeworth series approximation). To further investigate the detected relationship between candidate CpG sites and systolic blood pressure levels, binary logistic regression analyses were performed in a larger and independent cohort of 539 individuals aged 19-101 years to elucidate a relationship between EH and the methylation state in candidate CpG sites. Results: We identified 24 promoter associated CpG sites that correlated with change in SBP after RYGB surgery (p < 10-16). Two of these CpG loci (cg00875989, cg09134341) were significantly hypomethylated in dependency of EH (p < 10-03). These results were independent of age, BMI, ethnicity and sex. Conclusions: The identification of these novel CpG sites may contribute to a further understanding of the epigenetic regulatory mechanisms underlying the development of essential hypertension.
  •  
2.
  • Krattinger, Regina, et al. (författare)
  • Chenodeoxycholic acid significantly impacts the expression of miRNAs and genes involved in lipid, bile acid and drug metabolism in human hepatocytes
  • 2016
  • Ingår i: Life Sciences. - : Elsevier BV. - 0024-3205 .- 1879-0631. ; 156, s. 47-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Bile acids (BAs) are important gut signaling hormones, influencing lipid, glucose, and energy homeostasis. The exact mechanisms behind these effects are not yet fully understood. Lately, they have come to the fore as putative therapeutics in metabolic diseases, such as e.g. nonalcoholic fatty liver disease (NAFLD). We elucidate to what extent BAs impacts on the mRNAome and microRNAome in hepatocytes to gather novel insights into the mechanisms behind metabolic and toxicologic effects of bile acids. Main methods: Five batches of primary human hepatocytes were treated with 50 mu mol/l chenodeoxycholic acid (CDCA) for 24 or 48 h. Total RNA was extracted, size fractionated and subjected to Next Generation Sequencing to generate mRNA and miRNA profiles. Key findings: Expression of 738 genes and 52 miRNAs were CDCA dependently decreased, whereas 1566 genes and 29 miRNAs were significantly increased in hepatocytes. Distinct gene clusters controlling BA and lipid homeostasis (FGF(R), APO and FABP family members, HMGCS2) and drug metabolism (CYP, UGT and SULT family members) were significantly modulated by CDCA. Importantly, CDCA affected distinct microRNAs, including miR-34a, -505, -885, -1260 and -552 that systematically correlated in expression with gene clusters responsible for bile acid, lipid and drug homeostasis incorporating genes, such as e.g. SLCO1B1, SLC22A7, FGF19, CYP2E1, CYP1A2, APO family members and FOXO3. Significance: Bile acids significantly modulate metabolic and drug associated gene networks that are connected to distinct shifts in the microRNAome These findings give novel insights on how BA enfold metabolic and system toxic effects.
  •  
3.
  • Krattinger, Regina, et al. (författare)
  • microRNA-192 suppresses the expression of the farnesoid X receptor
  • 2016
  • Ingår i: American Journal of Physiology - Gastrointestinal and Liver Physiology. - : American Physiological Society. - 0193-1857 .- 1522-1547. ; 310:11, s. G1044-G1051
  • Tidskriftsartikel (refereegranskat)abstract
    • Farnesoid X receptor (FXR, NR1H4) plays an important role in the regulation of bile acid homeostasis in liver and intestine and may exert protective effects against certain forms of cancer such as colon carcinoma. However, the role of FXR in cell growth regulation, apoptosis, and carcinogenesis is still controversial. Similar to FXR, microRNA-192 (miR-192) is mainly expressed in the liver and colon and plays an important role in the pathogenesis of colon carcinoma. In this study, we investigated the extent to which FXR is regulated by miR-192. Two in silico-predicted binding sites for miR-192-3p within the NR1H4-3' untranslated region (UTR) were examined in vitro by luciferase reporter assays. Wild-type and mutated forms of the NR1H4-3' UTR were subcloned into a pmirGLO vector and cotransfected into Huh-7 cells with miR-192-3p. To study the effects of miR-192 on the expression of FXR, FXR target genes and cell proliferation, Huh-7 and Caco-2 cells were transfected with miR-192-5p and -3p mimics or antagomirs. In addition, the correlation between FXR and miR-192 expression was studied by linear regression analyses in colonic adenocarcinoma tissue from 27 patients. MiR-192-3p bound specifically to the NR1H4-3' UTR and significantly decreased luciferase activity. Transfection with miR-192 led to significant decreases in NR1H4 mRNA and protein levels as well as the mRNA levels of the FXR-inducible bile acid transporters OST alpha-OST beta and OATP1B3. Significant inverse correlations were detected in colonic adenocarcinoma between NR1H4 mRNA and miR-192-3p expression. In summary, microRNA-192 suppresses the expression of FXR and FXR target genes in vitro and in vivo.
  •  
4.
  • Nilsson, Emil K., et al. (författare)
  • Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression
  • 2016
  • Ingår i: Omics. - : Mary Ann Liebert Inc. - 1536-2310 .- 1557-8100. ; 20:6, s. 334-342
  • Tidskriftsartikel (refereegranskat)abstract
    • Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data.
  •  
5.
  • Schiöth, Helgi B., et al. (författare)
  • A targeted analysis reveals relevant shifts in the methylation and transcription of genes responsible for bile acid homeostasis and drug metabolism in non-alcoholic fatty liver disease
  • 2016
  • Ingår i: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 17
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Non-alcoholic fatty liver disease (NAFLD) is associated with a high risk for liver cirrhosis and cancer. Recent studies demonstrate that NAFLD significantly impacts on the genome wide methylation and expression reporting top hit genes to be associated with e.g. diabetes mellitus. In a targeted analysis we specifically investigate to what extent NAFLD is associated with methylation and transcriptional changes in gene networks responsible for drug metabolism (DM) and bile acid (BA) homeostasis, which may trigger liver and system toxic events. Methods: We performed a systematic analysis of 73 genes responsible for BA homeostasis and DM based on liver derived methylation and expression data from three cohort studies including 103 NAFLD and 75 non-NAFLD patients. Using multiple linear regression models, we detected methylation differences in proximity to the transcriptional start site of these genes in two NAFLD cohorts and correlated the methylation of significantly changed CpG sites to transcriptional expression in a third cohort using robust multiple linear regression approaches. Results: We detected 64 genes involved in BA homeostasis and DM to be significantly differentially methylated. In 26 of these genes, methylation significantly correlated with RNA expression, detecting i.e. genes such as CYP27A1, OST alpha, and SLC27A5 (BA homeostasis), and SLCO2B1, SLC47A1, and several UGT and CYP genes (DM) to be NAFLD dependently modulated. Conclusions: NAFLD is associated with significant shifts in the methylation of key genes responsible for BA and DM that are associated with transcriptional modulations. These findings have implications for BA composition, BA regulated metabolic pathways and for drug safety and efficacy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy