SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Burt David) srt2:(2005-2009)"

Sökning: WFRF:(Burt David) > (2005-2009)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Liti, Gianni, et al. (författare)
  • Population genomics of domestic and wild yeasts.
  • 2009
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 458:7236, s. 337-41
  • Tidskriftsartikel (refereegranskat)abstract
    • Since the completion of the genome sequence of Saccharomyces cerevisiae in 1996 (refs 1, 2), there has been a large increase in complete genome sequences, accompanied by great advances in our understanding of genome evolution. Although little is known about the natural and life histories of yeasts in the wild, there are an increasing number of studies looking at ecological and geographic distributions, population structure and sexual versus asexual reproduction. Less well understood at the whole genome level are the evolutionary processes acting within populations and species that lead to adaptation to different environments, phenotypic differences and reproductive isolation. Here we present one- to fourfold or more coverage of the genome sequences of over seventy isolates of the baker's yeast S. cerevisiae and its closest relative, Saccharomyces paradoxus. We examine variation in gene content, single nucleotide polymorphisms, nucleotide insertions and deletions, copy numbers and transposable elements. We find that phenotypic variation broadly correlates with global genome-wide phylogenetic relationships. S. paradoxus populations are well delineated along geographic boundaries, whereas the variation among worldwide S. cerevisiae isolates shows less differentiation and is comparable to a single S. paradoxus population. Rather than one or two domestication events leading to the extant baker's yeasts, the population structure of S. cerevisiae consists of a few well-defined, geographically isolated lineages and many different mosaics of these lineages, supporting the idea that human influence provided the opportunity for cross-breeding and production of new combinations of pre-existing variations.
  •  
2.
  •  
3.
  • Axelsson, Erik, et al. (författare)
  • Comparison of the chicken and turkey genomes reveals a higher rate of nucleotide divergence on microchromosomes than macrochromosomes.
  • 2005
  • Ingår i: Genome Res. - 1088-9051. ; 15:1, s. 120-5
  • Tidskriftsartikel (refereegranskat)abstract
    • A distinctive feature of the avian genome is the large heterogeneity in the size of chromosomes, which are usually classified into a small number of macrochromosomes and numerous microchromosomes. These chromosome classes show characteristic differences in a number of interrelated features that could potentially affect the rate of sequence evolution, such as GC content, gene density, and recombination rate. We studied the effects of these factors by analyzing patterns of nucleotide substitution in two sets of chicken-turkey sequence alignments. First, in a set of 67 orthologous introns, divergence was significantly higher in microchromosomes (chromosomes 11-38; 11.7% divergence) than in both macrochromosomes (chromosomes 1-5; 9.9% divergence; P = 0.016) and intermediate-sized chromosomes (chromosomes 6-10; 9.5% divergence; P = 0.026). At least part of this difference was due to the higher incidence of CpG sites on microchromosomes. Second, using 155 orthologous coding sequences we noted a similar pattern, in which synonymous substitution rates on microchromosomes (13.1%) were significantly higher than were rates on macrochromosomes (10.3%; P = 0.024). Broadly assuming neutrality of introns and synonymous sites, or constraints on such sequences do not differ between chromosomal classes, these observations imply that microchromosomal genes are exposed to more germ line mutations than those on other chromosomes. We also find that dN/dS ratios for genes located on microchromosomes (average, 0.094) are significantly lower than those of macrochromosomes (average, 0.185; P = 0.025), suggesting that the proteins of genes on microchromosomes are under greater evolutionary constraint.
  •  
4.
  • Rubin, Carl-Johan, 1978- (författare)
  • Functional Genomics of Bone Metabolism : Novel Candidate Genes Identified by Studies in Chicken Models
  • 2008
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Osteoporosis is a disease that leads to decreased bone mineral density (BMD), an altered bone micro-architecture and fragile bones. The disease is highly heritable and numerous genes are thought to be involved, making it difficult to identify the causative genetic elements.Animal models, mainly intercrosses between laboratory strains of mice, have been succesfully used to map genes affecting these traits, but may not mirror the multifactorial genetic etiology of highly complex traits such as osteoporosis.Over the course of tens of thousand years humans have kept domestic animals whose phenotypic repertoires have been tailored to meet our needs. Wild-type red junglefowl (RJ) and domestic White Leghorn (WL) chicken differ for several bone traits. In this thesis Quantitative Trait Loci (QTL) mapping was used to trace the inheritance of bone traits in two separate intercrosses between RJ and WL. In these studies we identified several QTL that contributed to differences in BMD, bone size and biomechanical strength of bone. In a comparison of QTL identified in the two intercrosses it was observed that nine QTL had overlapping genomic positions, implicating these loci as important to bone phenotypic variation in chicken.In two separate studies, microarray technology was used to compare global gene expression in bone tissue from RJ and WL. In these studies, differential expression was observed for 779 and 560 genes, respectively. Many differentially expressed genes were co-localized with QTL, which implicates them as QTL-candidates. Results presented in this thesis link several genomic regions and genes to variation in bone traits. Increased knowledge about these identified genes and regions will contribute to a better understanding of the mechanisms underlying inter-individual differences in bone metabolism, both in chicken and man.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy