SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Campbell D) srt2:(1995-1999)"

Sökning: WFRF:(Campbell D) > (1995-1999)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zabel, B A, et al. (författare)
  • Human G protein-coupled receptor GPR-9-6/CC chemokine receptor 9 is selectively expressed on intestinal homing T lymphocytes, mucosal lymphocytes, and thymocytes and is required for thymus-expressed chemokine-mediated chemotaxis
  • 1999
  • Ingår i: Journal of Experimental Medicine. - 1540-9538. ; 190:9, s. 1241-1256
  • Tidskriftsartikel (refereegranskat)abstract
    • TECK (thymus-expressed chemokine), a recently described CC chemokine expressed in thymus and small intestine, was found to mediate chemotaxis of human G protein-coupled receptor GPR-9-6/L1.2 transfectants. This activity was blocked by anti-GPR-9-6 monoclonal antibody (mAb) 3C3. GPR-9-6 is expressed on a subset of memory alpha4beta7(high) intestinal trafficking CD4 and CD8 lymphocytes. In addition, all intestinal lamina propria and intraepithelial lymphocytes express GPR-9-6. In contrast, GPR-9-6 is not displayed on cutaneous lymphocyte antigen-positive (CLA(+)) memory CD4 and CD8 lymphocytes, which traffic to skin inflammatory sites, or on other systemic alpha4beta7(-)CLA(-) memory CD4/CD8 lymphocytes. The majority of thymocytes also express GPR-9-6, but natural killer cells, monocytes, eosinophils, basophils, and neutrophils are GPR-9-6 negative. Transcripts of GPR-9-6 and TECK are present in both small intestine and thymus. Importantly, the expression profile of GPR-9-6 correlates with migration to TECK of blood T lymphocytes and thymocytes. As migration of these cells is blocked by anti-GPR-9-6 mAb 3C3, we conclude that GPR-9-6 is the principal chemokine receptor for TECK. In agreement with the nomenclature rules for chemokine receptors, we propose the designation CCR-9 for GPR-9-6. The selective expression of TECK and GPR-9-6 in thymus and small intestine implies a dual role for GPR-9-6/CCR-9, both in T cell development and the mucosal immune response.
  •  
2.
  • Campbell, D, et al. (författare)
  • Two forms of the photosystem II D1 protein alter energy dissipation and state transitions in the cyanobacterium Synechococcus sp PCC 7942
  • 1996
  • Ingår i: Photosynthesis Research. - 0166-8595 .- 1573-5079. ; 47:2, s. 131-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1:1 predominates under low light hut is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher q(N)) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697-698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.
  •  
3.
  • Poon, D, et al. (författare)
  • Identification and characterization of a TFIID-like multiprotein complex from Saccharomyces cerevisiae.
  • 1995
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - 0027-8424 .- 1091-6490. ; 92:18, s. 8224-8
  • Tidskriftsartikel (refereegranskat)abstract
    • Although the mechanisms of transcriptional regulation by RNA polymerase II are apparently highly conserved from yeast to man, the identification of a yeast TATA-binding protein (TBP)-TBP-associated factor (TAFII) complex comparable to the metazoan TFIID component of the basal transcriptional machinery has remained elusive. Here, we report the isolation of a yeast TBP-TAFII complex which can mediate transcriptional activation by GAL4-VP16 in a highly purified yeast in vitro transcription system. We have cloned and sequenced the genes encoding four of the multiple yeast TAFII proteins comprising the TBP-TAFII multisubunit complex and find that they are similar at the amino acid level to both human and Drosophila TFIID subunits. Using epitope-tagging and immunoprecipitation experiments, we demonstrate that these genes encode bona fide TAF proteins and show that the yeast TBP-TAFII complex is minimally composed of TBP and seven distinct yTAFII proteins ranging in size from M(r) = 150,000 to M(r) = 25,000. In addition, by constructing null alleles of the cloned TAF-encoding genes, we show that normal function of the TAF-encoding genes is essential for yeast cell viability.
  •  
4.
  •  
5.
  • Bååth, Erland, et al. (författare)
  • Effect of metal-rich sludge amendments on the soil microbial community
  • 1998
  • Ingår i: Applied and Environmental Microbiology. - 0099-2240. ; 64:1, s. 238-245
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of heavy-metal-containing sewage sludge on the soil microbial community were studied in two agricultural soils of different textures, which had been contaminated separately with three predominantly single metals (Cu, Zn, and Ni) at two different levels more than 20 years ago. We compared three community-based microbiological measurements, namely, phospholipid fatty acid (PLFA) analysis to reveal changes in species composition, the Biolog system to indicate metabolic fingerprints of microbial communities, and the thymidine incorporation technique to measure bacterial community tolerance. In the Luddington soil, bacterial community tolerance increased in all metal treatments compared to an unpolluted-sludge-treated control soil. Community tolerance to specific metals increased the most when the same metal was added to the soil; for example, tolerance to Cu increased most in Cu-polluted treatments. A dose-response effect was also evident. There were also indications of cotolerance to metals whose concentration had not been elevated by the sludge treatment. The PLFA pattern changed in all metal treatments, but the interpretation was complicated by the soil moisture content, which also affected the results. The Biolog measurements indicated similar effects of metals and moisture to the PLFA measurements, but due to high variation between replicates, no significant differences compared to the uncontaminated control were found. In the Lee Valley soil, significant increases in community tolerance were found for the high levels of Cu and Zn, while the PLFA pattern was significantly altered for the soils with high levels of Cu, Ni, and Zn. No effects on the Biolog measurements were found in this soil.
  •  
6.
  •  
7.
  • Campbell, D, et al. (författare)
  • Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation
  • 1998
  • Ingår i: Microbiology and molecular biology reviews. - 1092-2172 .- 1098-5557. ; 62:3, s. 667-
  • Forskningsöversikt (refereegranskat)abstract
    • Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters F-V/F-M. F-V'/F-M', q(p),q(N), NPQ, and phi PS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters cart be used to estimate the electron transport rate at the acclimated growth light intensity.
  •  
8.
  • CAMPBELL, D, et al. (författare)
  • ELECTRON-TRANSPORT REGULATES EXCHANGE OF 2 FORMS OF PHOTOSYSTEM-II D1 PROTEIN IN THE CYANOBACTERIUM SYNECHOCOCCUS
  • 1995
  • Ingår i: EMBO Journal. - 0261-4189 .- 1460-2075. ; 14:22, s. 5457-5466
  • Tidskriftsartikel (refereegranskat)abstract
    • Synechococcus sp, PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light, We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light, Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2, During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass, D1:* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor, After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains, Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process, These treatments all increase excitation pressure on photosystem II relative to electron transport, Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.
  •  
9.
  • Campbell, D, et al. (författare)
  • Oxygen-dependent electron flow influences photosystem II function and psbA gene expression in the cyanobacterium Synechococcus sp PCC 7942
  • 1999
  • Ingår i: Physiologia Plantarum. - 0031-9317 .- 1399-3054. ; 105:4, s. 746-755
  • Tidskriftsartikel (refereegranskat)abstract
    • During acclimated growth in Synechococcus sp, PCC 7942 a substantial proportion of the electrons extracted from mater by photosystem II ultimately flow back to oxygen, This flow increases rapidly under high light, which allows Synechococcus to maintain photosystem II centers largely open, even under excessive excitation, The electron flow to oxygen with increasing light accounts for the progressive discrepancy between the light response curve of measured oxygen evolution, and the light response curve of photosystem II activity estimated from fluorescence measures. In cells under anoxia this flexible electron sink is lost and photosystem II centers suffer partial closure at the growth light intensity, with closure becoming more severe under excess light. As predicted from earlier work this PSII closure results in rapid loss of psbAI message, encoding the D1:1 protein of PSII, and induction of psbAII/AIII encoding the alternate D1:2 protein. The changes in the mRNA pool are not, however, reflected at the protein level, and D1:1 remains in the thylakoid membranes. There is no accumulation of D1:2, despite some continued synthesis of other proteins. PSII closure, therefore, results in repression of psbAI and induction psbAII/AIII expression, but D1:1/D1:2 exchange is blocked by anoxia, downstream from transcription. D1:1 protein and PSII activity are quite stable under anoxia and moderate illumination, Nevertheless, upon recovery under oxygenic conditions, the existing D1:1 is lost from the membranes, resulting in a transient drop in PSII activity. This suggests that under normal conditions the cells use oxygen to facilitate preemptive turnover of D1 proteins.
  •  
10.
  • Campbell, D, et al. (författare)
  • Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms
  • 1996
  • Ingår i: Plant Physiology. - 0032-0889 .- 1532-2548. ; 111:4, s. 1293-1298
  • Tidskriftsartikel (refereegranskat)abstract
    • An important factor in photosynthetic ecophysiology is the light regime that a photobiont is acclimated to exploit. In a wide range of cyanobacteria and cyano-lichens, the easily measured fluorescence parameters, coefficient of nonphotochemical quenching of photosystem II variable fluorescence (q(N)) and nonphotochemical quenching, decline to a minimum near the acclimated growth light intensity. This characteristic pattern predicts the integrated light regime to which populations are acclimated, information that is particularly useful for cyanobacteria or cyano-lichens from habitats with highly variable light intensities. q(N) reflects processes that compete with photosystem II photochemistry for absorbed excitation energy. In cyanobacteria, we find no evidence for energy-dependent quenching mechanisms, which are the predominant components of q(N) in higher plants. Instead, in cyanobacteria, q(N) correlates closely with the excitation flow from the phycobilisome to photosystem I, indicating that q(N) reflects the state transition mechanism for equilibration of excitation from the phycobilisome to the two photosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy