SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cao Renhai) srt2:(2005-2009)"

Sökning: WFRF:(Cao Renhai) > (2005-2009)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cao, Renhai, et al. (författare)
  • Hypoxia-induced retinal angiogenesis in zebrafish as a model to study retinopathy
  • 2008
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 3:7, s. e2748-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanistic understanding and defining novel therapeutic targets of diabetic retinopathy and age-related macular degeneration (AMD) have been hampered by a lack of appropriate adult animal models. Here we describe a simple and highly reproducible adult fli-EGFP transgenic zebrafish model to study retinal angiogenesis. The retinal vasculature in the adult zebrafish is highly organized and hypoxia-induced neovascularization occurs in a predictable area of capillary plexuses. New retinal vessels and vascular sprouts can be accurately measured and quantified. Orally active anti-VEGF agents including sunitinib and ZM323881 effectively block hypoxia-induced retinal neovascularization. Intriguingly, blockage of the Notch signaling pathway by the inhibitor DAPT under hypoxia, results in a high density of arterial sprouting in all optical arteries. The Notch suppression-induced arterial sprouting is dependent on tissue hypoxia. However, in the presence of DAPT substantial endothelial tip cell formation was detected only in optic capillary plexuses under normoxia. These findings suggest that hypoxia shifts the vascular targets of Notch inhibitors. Our findings for the first time show a clinically relevant retinal angiogenesis model in adult zebrafish, which might serve as a platform for studying mechanisms of retinal angiogenesis, for defining novel therapeutic targets, and for screening of novel antiangiogenic drugs.
  •  
2.
  • Iivanainen, Erika, et al. (författare)
  • Intra- and extracellular signaling by endothelial neuregulin-1
  • 2007
  • Ingår i: Experimental Cell Research. - : Elsevier BV. - 0014-4827 .- 1090-2422. ; 313:13, s. 2896-2909
  • Tidskriftsartikel (refereegranskat)abstract
    • Suppression of tumor growth by inhibition of ErbB receptor signaling is well documented. However, relatively little is known about the ErbB signaling system in the regulation of angiogenesis, a process necessary for tumor growth. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is expressed by vascular endothelial cells (EC) and promotes endothelial recruitment of vascular smooth muscle cells (SMC). To assess whether other members of the EGF-family regulate angiogenesis, the expression of 10 EGF-like growth factors in primary ECs and SMCs was analyzed. In addition to HB-EGF, neuregulin-1 (NRG-1) was expressed in ECs in vitro and in vivo. Endothelial NRG-1 was constitutively processed to soluble extracellular and intracellular signaling fragments, and its expression was induced by hypoxia. NRG-1 was angiogenic in vivo in mouse corneal pocket and chicken chorioallantoic membrane (CAM) assays. However, consistent with the lack of NRG-1 receptors in several primary EC lines, NRG-1 did not directly stimulate cellular responses in cultured ECs. In contrast, NRG-1 promoted EC responses in vitro and angiogenesis in CAM in vivo by mechanisms dependent on VEGF-A and VEGFR-2. These results indicate that NRG-1 is expressed by ECs and regulates angiogenesis by mechanisms involving paracrine up-regulation of VEGF-A.
  •  
3.
  • Jensen, Lasse Dahl, et al. (författare)
  • In vivo angiogenesis and lymphangiogenesis models
  • 2009
  • Ingår i: Current molecular medicine. - : Bentham Science Publishers. - 1566-5240 .- 1875-5666. ; 9:8, s. 982-991
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenesis research has become one of the most important areas in biomedical research. At the time of writing this review, there were approximately 3536 articles published in the year of 2008 alone on the topic of angiogenesis. The fast expansion of this research field demands development of rigorous, reliable, stable, convenient, and clinically relevant assay systems for disease diagnosis, prognosis, therapeutic evaluation, drug discovery, and mechanistic studies at the molecular level. Here, we discuss several commonly used in vivo angiogenesis models by systematically analyzing and pointing out pitfalls of each assay. Owing to existence of numerous assays and the limitation of text, it is impossible to discuss all these assays in this article. Here we select several most commonly used angiogenesis assays performed in various species including mice, chicks and zebrafish for further in-depth discussion. We hope this information will be valuable for improving current angiogenesis research.
  •  
4.
  • Jensen, Lasse Dahl, et al. (författare)
  • Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish
  • 2009
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 106:43, s. 18408-18413
  • Tidskriftsartikel (refereegranskat)abstract
    • The blood and lymphatic vasculatures are structurally and functionally coupled in controlling tissue perfusion, extracellular interstitial fluids, and immune surveillance. Little is known, however, about the molecular mechanisms that underlie the regulation of bloodlymphatic vessel connections and lymphatic perfusion. Here we show in the adult zebrafish and glass catfish (Kryptopterus bicirrhis) that blood-lymphatic conduits directly connect arterial vessels to the lymphatic system. Under hypoxic conditions, arterial-lymphatic conduits (ALCs) became highly dilated and linearized by NO-induced vascular relaxation, which led to blood perfusion into the lymphatic system. NO blockage almost completely abrogated hypoxia-induced ALC relaxation and lymphatic perfusion. These findings uncover mechanisms underlying hypoxia-induced oxygen compensation by perfusion of existing lymphatics in fish. Our results might also imply that the hypoxia-induced NO pathway contributes to development of progression of pathologies, including promotion of lymphatic metastasis by modulating arterial-lymphatic conduits, in the mammalian system.
  •  
5.
  • Nissen, Lars Johan, et al. (författare)
  • Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.
  • 2007
  • Ingår i: The Journal of clinical investigation. - 0021-9738. ; 117:10, s. 2766-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumors produce multiple growth factors, but little is known about the interplay between various angiogenic factors in promoting tumor angiogenesis, growth, and metastasis. Here we show that 2 angiogenic factors frequently upregulated in tumors, PDGF-BB and FGF2, synergistically promote tumor angiogenesis and pulmonary metastasis. Simultaneous overexpression of PDGF-BB and FGF2 in murine fibrosarcomas led to the formation of high-density primitive vascular plexuses, which were poorly coated with pericytes and VSMCs. Surprisingly, overexpression of PDGF-BB alone in tumor cells resulted in dissociation of VSMCs from tumor vessels and decreased recruitment of pericytes. In the absence of FGF2, capillary ECs lacked response to PDGF-BB. However, FGF2 triggers PDGFR-alpha and -beta expression at the transcriptional level in ECs, which acquire hyperresponsiveness to PDGF-BB. Similarly, PDGF-BB-treated VSMCs become responsive to FGF2 stimulation via upregulation of FGF receptor 1 (FGFR1) promoter activity. These findings demonstrate that PDGF-BB and FGF2 reciprocally increase their EC and mural cell responses, leading to disorganized neovascularization and metastasis. Our data suggest that intervention of this non-VEGF reciprocal interaction loop for the tumor vasculature could be an important therapeutic target for the treatment of cancer and metastasis.
  •  
6.
  • Tritsaris, Katerina, et al. (författare)
  • IL-20 is an arteriogenic cytokine that remodels collateral networks and improves functions of ischemic hind limbs
  • 2007
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 104:39, s. 15364-15369
  • Tidskriftsartikel (refereegranskat)abstract
    • Successful therapeutic angiogenesis for the treatment of ischemic disorders relies on selection of optimal proangiogenic or arteriogenic agents that are able to promote establishment of functional collateral networks. Here, we show that IL-20, a pleiotropic inflammatory cytokine, displays an imperative effect on vascular remodeling. Stimulation of both large and microvascular endothelial cells with IL-20 leads to activation of receptor-dependent multiple intracellular signaling components, including increased phosphorylation levels of JAK2/STAT5, Erk1/2, and Akt; activation of small GTP-binding proteins Rac and Rho; and intracellular release of calcium. Surprisingly, IL-20 significantly promotes endothelial cell tube formation without affecting their proliferation and motility. These findings suggest that the vascular function of IL-20 involves endothelial cell organization, vessel maturation, and remodeling. Consistent with this notion, delivery of IL-20 to the ischemic muscle tissue significantly improves arteriogenesis and blood perfusion in a rat hind-limb model. Our findings provide mechanistic insights on vascular functions of IL-20 and define therapeutic implication of this cytokine for the treatment of ischemic disorders.
  •  
7.
  • Xue, Yuan, et al. (författare)
  • FOXC2 controls Ang-2 expression and modulates angiogenesis, vascular patterning, remodeling, and functions in adipose tissue
  • 2008
  • Ingår i: Proceedings of The National Academy of Sciences of The United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 105:29, s. 10167-10172
  • Tidskriftsartikel (refereegranskat)abstract
    • Adipogenesis is spatiotemporally coupled to angiogenesis throughout adult life, and the interplay between these two processes is communicated by multiple factors. Here we show that in a transgenic mouse model, increased expression of forkhead box C2 (FOXC2) in the adipose tissue affects angiogenesis, vascular patterning, and functions. White and brown adipose tissues contain a considerably high density of microvessels appearing as vascular plexuses, which show redistribution of vascular smooth muscle cells and pericytes. Dysfunction of these primitive vessels is reflected by impairment of skin wound healing. We further provide a mechanistic insight of the vascular phenotype by showing that FOXC2 controls Ang-2 expression by direct activation of its promoter in adipocytes. Remarkably, an Ang-2-specific antagonist almost completely reverses this vascular phenotype. Thus, the FOXC2–Ang-2 signaling system is crucial for controlling adipose vascular function, which is part of an adaptation to increased adipose tissue metabolism.
  •  
8.
  • Xue, Yuan, et al. (författare)
  • Hypoxia-independent angiogenesis in adipose tissues during cold acclimation.
  • 2009
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131 .- 1932-7420. ; 9:1, s. 99-109
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular mechanisms of angiogenesis in relation to adipose tissue metabolism remain poorly understood. Here, we show that exposure of mice to cold led to activation of angiogenesis in both white and brown adipose tissues. In the inguinal depot, cold exposure resulted in elevated expression levels of brown-fat-associated proteins, including uncoupling protein-1 (UCP1) and PGC-1alpha. Proangiogenic factors such as VEGF were upregulated, and endogenous angiogenesis inhibitors, including thrombospondin, were downregulated. In wild-type mice, the adipose tissues became hypoxic during cold exposure; in UCP1(-/-) mice, hypoxia did not occur, but, remarkably, the augmented angiogenesis was unaltered and was thus hypoxia independent. Intriguingly, VEGFR2 blockage abolished the cold-induced angiogenesis and significantly impaired nonshivering thermogenesis capacity. Unexpectedly, VEGFR1 blockage resulted in the opposite effects: increased adipose vascularity and nonshivering thermogenesis capacity. Our findings have conceptual implications concerning application of angiogenesis modulators for treatment of obesity and metabolic disorders.
  •  
9.
  • Zhang, Junhang, 1968-, et al. (författare)
  • Differential roles of PDGFR-(alpha) and PDGFR-(beta) in angiogenesis and vessel stability
  • 2009
  • Ingår i: The FASEB Journal. - : Wiley. - 0892-6638 .- 1530-6860. ; 23, s. 153-163
  • Tidskriftsartikel (refereegranskat)abstract
    • Preclinical and clinical evaluations of individual proangiogenic/arteriogenic factors for the treatment of ischemic myocardium and skeletal muscle have produced unfulfilled promises. The establishment of functional and stable arterial vascular networks may require combinations of different angiogenic and arteriogenic factors. Using in vivo angiogenesis and ischemic hind-limb animal models, we have compared the angiogenic and therapeutic activities of fibroblast growth factor 2 (FGF-2) in combinations with PDGF-AA and PDGF-AB, two members of the platelet-derived growth factor (PDGF) family, with distinct receptor binding patterns. We show that both PDGF-AA/FGF-2 and PDGF-AB/FGF-2 in combinations synergistically induce angiogenesis in the mouse cornea. FGF-2 up-regulates PDGFR- and -β expression levels in the newly formed blood vessels. Interestingly, PDGF-AB/FGF-2, but not PDGF-AA/FGF-2, is able to stabilize the newly formed vasculature by recruiting pericytes, and an anti-PDGFR-β neutralizing antibody significantly blocks PDGF-AB/FGF-2-induced vessel stability. These findings demonstrate that PDGFR-β receptor is essential for vascular stability. Similarly, PDGF-AB/FGF-2 significantly induces stable collateral growth in the rat ischemic hind limb. The high number of collaterals induced by PDGF-AB/FGF-2 leads to dramatic improvement of the paw’s skin perfusion. Immunohistochemical analysis of the treated skeletal muscles confirms that a combination of PDGF-AB and FGF-2 significantly induces arteriogenesis in the ischemic tissue. A combination of PDGF-AB and FGF-2 would be optimal proangiogenic agents for the treatment of ischemic diseases.—Zhang, J., Cao, R., Zhang, Y., Jia, T., Cao, Y., Wahlberg, E. Differential roles of PDGFR- and PDGFR-βin angiogenesis and vessel stability.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy