SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Cirtwill Alyssa) srt2:(2021)"

Sökning: WFRF:(Cirtwill Alyssa) > (2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cirtwill, Alyssa R., et al. (författare)
  • Building food networks from molecular data : Bayesian or fixed-number thresholds for including links
  • 2021
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 50, s. 67-76
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA metabarcoding of faeces or gut contents has greatly increased our ability to construct networks of predators and prey (food webs) by reducing the need to observe predation events directly. The possibility of both false positives and false negatives in DNA sequences, however, means that constructing food networks using DNA requires researchers to make many choices as to which DNA sequences indicate true prey for a particular predator. To date, DNA-based food networks are usually constructed by including any DNA sequence with more than a threshold number of reads. The logic used to select this threshold is often not explained, leading to somewhat arbitrary-seeming networks. As an alternative strategy, we demonstrate how to construct food networks using a simple Bayesian model to suggest which sequences correspond to true prey. The networks obtained using a well-chosen fixed cutoff and our Bayesian approach are very similar, especially when links are resolved to prey families rather than species. We therefore recommend that researchers reconstruct diet data using a Bayesian approach with well-specified assumptions rather than continuing with arbitrary fixed cutoffs. Explicitly stating assumptions within a Bayesian framework will lead to better-informed comparisons between networks constructed by different groups and facilitate drawing together individual case studies into more coherent ecological theory. Note that our approach can easily be extended to other types of ecological networks constructed by DNA metabarcoding of pollen loads, identification of parasite DNA in faeces, etc.
  •  
2.
  • Hambäck, Peter A., et al. (författare)
  • More intraguild prey than pest species in arachnid diets may compromise biological control in apple orchards
  • 2021
  • Ingår i: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 57, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the full diet of natural enemies is necessary for evaluating their role as biocontrol agents, because many enemy species do not only feed on pests but also on other natural enemies. Such intraguild predation can compromise pest control if the consumed enemies are actually better for pest control than their predators. In this study, we used gut metabarcoding to quantify diets of all common arachnid species in Swedish and Spanish apple orchards. For this purpose, we designed new primers that reduce amplification of arachnid predators while retaining high amplification of all prey groups. Results suggest that most arachnids consume a large range of putative pest species on apple but also a high proportion of other natural enemies, where the latter constitute almost a third of all prey sequences. Intraguild predation also varied between regions, with a larger content of heteropteran bugs in arachnid guts from Spanish orchards, but not between orchard types. There was also a tendency for cursorial spiders to have more intraguild prey in the gut than web spiders. Two groups that may be overlooked as important biocontrol agents in apple orchards seem to be theridiid web spiders and opilionids, where the latter had several small-bodied pest species in the gut. These results thus provide important guidance for what arachnid groups should be targets of management actions, even though additional information is needed to quantify all direct and indirect interactions occurring in the complex arthropod food webs in fruit orchards.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy