SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Friedl M) srt2:(2020)"

Sökning: WFRF:(Friedl M) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gonzalez-Beltran, AN, et al. (författare)
  • Community standards for open cell migration data
  • 2020
  • Ingår i: GigaScience. - : Oxford University Press (OUP). - 2047-217X. ; 9:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell migration research has become a high-content field. However, the quantitative information encapsulated in these complex and high-dimensional datasets is not fully exploited owing to the diversity of experimental protocols and non-standardized output formats. In addition, typically the datasets are not open for reuse. Making the data open and Findable, Accessible, Interoperable, and Reusable (FAIR) will enable meta-analysis, data integration, and data mining. Standardized data formats and controlled vocabularies are essential for building a suitable infrastructure for that purpose but are not available in the cell migration domain. We here present standardization efforts by the Cell Migration Standardisation Organisation (CMSO), an open community-driven organization to facilitate the development of standards for cell migration data. This work will foster the development of improved algorithms and tools and enable secondary analysis of public datasets, ultimately unlocking new knowledge of the complex biological process of cell migration.
  •  
2.
  • Van der Meer, J. M. R., et al. (författare)
  • IL-15 superagonist N-803 improves IFNγ production and killing of leukemia and ovarian cancer cells by CD34+ progenitor-derived NK cells
  • 2020
  • Ingår i: Cancer Immunology and Immunotherapy. - : Springer Science and Business Media Deutschland GmbH. - 0340-7004 .- 1432-0851.
  • Tidskriftsartikel (refereegranskat)abstract
    • Allogeneic natural killer (NK) cell transfer is a potential immunotherapy to eliminate and control cancer. A promising source are CD34 + hematopoietic progenitor cells (HPCs), since large numbers of cytotoxic NK cells can be generated. Effective boosting of NK cell function can be achieved by interleukin (IL)-15. However, its in vivo half-life is short and potent trans-presentation by IL-15 receptor α (IL-15Rα) is absent. Therefore, ImmunityBio developed IL-15 superagonist N-803, which combines IL-15 with an activating mutation, an IL-15Rα sushi domain for trans-presentation, and IgG1-Fc for increased half-life. Here, we investigated whether and how N-803 improves HPC-NK cell functionality in leukemia and ovarian cancer (OC) models in vitro and in vivo in OC-bearing immunodeficient mice. We used flow cytometry-based assays, enzyme-linked immunosorbent assay, microscopy-based serial killing assays, and bioluminescence imaging, for in vitro and in vivo experiments. N-803 increased HPC-NK cell proliferation and interferon (IFN)γ production. On leukemia cells, co-culture with HPC-NK cells and N-803 increased ICAM-1 expression. Furthermore, N-803 improved HPC-NK cell-mediated (serial) leukemia killing. Treating OC spheroids with HPC-NK cells and N-803 increased IFNγ-induced CXCL10 secretion, and target killing after prolonged exposure. In immunodeficient mice bearing human OC, N-803 supported HPC-NK cell persistence in combination with total human immunoglobulins to prevent Fc-mediated HPC-NK cell depletion. Moreover, this combination treatment decreased tumor growth. In conclusion, N-803 is a promising IL-15-based compound that boosts HPC-NK cell expansion and functionality in vitro and in vivo. Adding N-803 to HPC-NK cell therapy could improve cancer immunotherapy.
  •  
3.
  • Bolton, Douglas K., et al. (författare)
  • Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery
  • 2020
  • Ingår i: Remote Sensing of Environment. - : Elsevier BV. - 0034-4257. ; 240
  • Tidskriftsartikel (refereegranskat)abstract
    • Dense time series of Landsat 8 and Sentinel-2 imagery are creating exciting new opportunities to monitor, map, and characterize temporal dynamics in land surface properties with unprecedented spatial detail and quality. By combining imagery from the Landsat 8 Operational Land Imager and the MultiSpectral Instrument on-board Sentinel-2A and -2B, the remote sensing community now has access to moderate (10–30 m) spatial resolution imagery with repeat periods of ~3 days in the mid-latitudes. At the same time, the large combined data volume from Landsat 8 and Sentinel-2 introduce substantial new challenges for users. Land surface phenology (LSP) algorithms, which estimate the timing of phenophase transitions and quantify the nature and magnitude of seasonality in remotely sensed land surface conditions, provide an intuitive way to reduce data volumes and redundancy, while also furnishing data sets that are useful for a wide range of applications including monitoring ecosystem response to climate variability and extreme events, ecosystem modelling, crop-type discrimination, and land cover, land use, and land cover change mapping, among others. To support the need for operational LSP data sets, here we describe a continental-scale land surface phenology algorithm and data product based on harmonized Landsat 8 and Sentinel-2 (HLS) imagery. The algorithm creates high quality times series of vegetation indices from HLS imagery, which are then used to estimate the timing of vegetation phenophase transitions at 30 m spatial resolution. We present results from assessment efforts evaluating LSP retrievals, and provide examples illustrating the character and quality of information related to land cover and terrestrial ecosystem properties provided by the continental LSP dataset that we have developed. The algorithm is highly successful in ecosystems with strong seasonal variation in leaf area (e.g., deciduous forests). Conversely, results in evergreen systems are less interpretable and conclusive.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy