SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Gidlöf Olof) srt2:(2019)"

Sökning: WFRF:(Gidlöf Olof) > (2019)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Celik, Selvi, et al. (författare)
  • Antisense regulation of atrial natriuretic peptide expression
  • 2019
  • Ingår i: JCI Insight. - : American Society for Clinical Investigation. - 2379-3708. ; 4:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The cardiac hormone atrial natriuretic peptide (ANP) is a central regulator of blood volume and a therapeutic target in hypertension and heart failure. Enhanced ANP activity in such conditions through inhibition of the degradative enzyme neprilysin has shown clinical efficacy but is complicated by consequences of simultaneous accumulation of a heterogeneous array of other hormones. Targets for specific ANP enhancement have not been available. Here, we describe a cis-acting antisense transcript (NPPA-AS1), which negatively regulates ANP expression in human cardiomyocytes. We show that NPPA-AS1 regulates ANP expression via facilitating NPPA repressor RE1-silencing transcription factor (REST) binding to its promoter, rather than forming an RNA duplex with ANP mRNA. Expression of ANP mRNA and NPPA-AS1 was increased and correlated in isolated strained human cardiomyocytes and in hearts from patients with advanced heart failure. Further, inhibition of NPPA-AS1 in vitro and in vivo resulted in increased myocardial expression of ANP, increased circulating ANP, increased renal cGMP, and lower blood pressure. The effects of NPPA-AS1 inhibition on NPPA expression in human cardiomyocytes were further marked under cell-strain conditions. Collectively, these results implicate the antisense transcript NPPA-AS1 as part of a physiologic self-regulatory ANP circuit and a viable target for specific ANP augmentation.
  •  
2.
  • Celik, Selvi, et al. (författare)
  • Functional Screening Identifies MicroRNA Regulators of Corin Activity and Atrial Natriuretic Peptide Biogenesis
  • 2019
  • Ingår i: Molecular and Cellular Biology. - 0270-7306. ; 39:23
  • Tidskriftsartikel (refereegranskat)abstract
    • Atrial natriuretic peptide (ANP) represents an attractive therapeutic target in hypertension and heart failure. The biologically active form of ANP is produced by the cardiac serine protease corin, and modulation of its activity might therefore represent a novel approach for ANP augmentation. MicroRNAs (miRNAs) are pervasive regulators of gene expression, but their potential role in regulating corin activity has not been elucidated. Our aim was to systematically identify and characterize miRNA regulators of corin activity in human cardiomyocytes. An assay for measuring serine protease activity in human induced pluripotent stem cell (iPS)-derived cardiomyocytes was used to perform a comprehensive screening of miRNA family inhibitors (n = 42). miRNA 1-3p (miR-1-3p) was identified as a potent inhibitor of corin activity. The interaction between miR-1-3p and a specific target site in the CORIN 3' untranslated region (3' UTR) was confirmed through argonaute 2 (AGO2)-RNA immunoprecipitation and reporter assays. Inhibition of miR-1-3p resulted in upregulation of CORIN gene and protein expression, as well as a concomitant increase in extracellular ANP. Additionally, miR-1-3p was found to interact with and inhibit the expression of several transcriptional activators of ANP gene expression. In conclusion, we have identified a novel regulator of corin activity and ANP biogenesis in human cardiomyocytes that might be of potential future therapeutic utility.
  •  
3.
  • Egerstedt, Anna, et al. (författare)
  • Profiling of the plasma proteome across different stages of human heart failure
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1, s. 5830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Heart failure (HF) is a major public health problem characterized by inability of the heart to maintain sufficient output of blood. The systematic characterization of circulating proteins across different stages of HF may provide pathophysiological insights and identify therapeutic targets. Here we report application of aptamer-based proteomics to identify proteins associated with prospective HF incidence in a population-based cohort, implicating modulation of immunological, complement, coagulation, natriuretic and matrix remodeling pathways up to two decades prior to overt disease onset. We observe further divergence of these proteins from the general population in advanced HF, and regression after heart transplantation. By leveraging coronary sinus samples and transcriptomic tools, we describe likely cardiac and specific cellular origins for several of the proteins, including Nt-proBNP, thrombospondin-2, interleukin-18 receptor, gelsolin, and activated C5. Our findings provide a broad perspective on both cardiac and systemic factors associated with HF development.
  •  
4.
  • Gidlöf, Olof, et al. (författare)
  • Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone
  • 2019
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Extracellular vesicles (EVs) are submicron, membrane-enclosed particles that are released from cells in various pathophysiological states. The molecular cargo of these vesicles is considered to reflect the composition of the cell of origin, and the EV proteome is therefore a potential source of biomarkers for various diseases. Our aim was to determine whether EVs isolated from plasma provide additional diagnostic value or improved pathophysiological understanding compared to plasma alone in the context of myocardial infarction (MI). A panel of proximity extension assays (n = 92) was employed to analyze EV lysates and plasma from patients with MI (n = 60) and healthy controls (n = 22). After adjustment for multiple comparisons, a total of 11 dysregulated proteins were identified in EVs of MI patients compared to the controls (q < 0.01). Three of these proteins: chymotrypsin C (CTRC), proto-oncogene tyrosine-protein kinase SRC (SRC) and C-C motif chemokine ligand 17 (CCL17) were unaltered in the corresponding plasma samples. As biomarkers for MI, rudimentary to no evidence exists for these proteins. In a separate group of patients with varying degrees of coronary artery disease, the decrease in EV-associated (but not plasma-related) SRC levels was confirmed by ELISA. Confirmation of the presence of SRC on EVs of different sizes and cellular origins was performed with ELISA, flow cytometry and nanoparticle tracking analysis. In conclusion, the data revealed that despite a similarity in the EV and plasma proteomes, analysis of isolated EVs does indeed provide additional diagnostic information that cannot be obtained from plasma alone.
  •  
5.
  • Pilz, Patrick M., et al. (författare)
  • Remote ischemic perconditioning attenuates adverse cardiac remodeling and preserves left ventricular function in a rat model of reperfused myocardial infarction
  • 2019
  • Ingår i: International Journal of Cardiology. - : Elsevier BV. - 0167-5273. ; 285, s. 72-79
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: Remote ischemic conditioning (RIC) is considered a potential clinical approach to reduce myocardial infarct size and ameliorate adverse post-infarct left ventricular (LV) remodeling, however the mechanisms are unknown. The aim was to clarify the impact of RIC on Neuregulin-1 (NRG-1)/ErbBs expression, inflammation and LV hemodynamic function. Methods and results: Male Sprague-Dawley rats were subjected to 30 min occlusion of the left coronary artery (LCA) followed by 2 weeks of reperfusion and separated into three groups: (1) sham operated (without LCA occlusion); (2) Myocardial ischemia/reperfusion (MIR) and (3) remote ischemic perconditioning group (MIR + RIPerc). Cardiac structural and functional changes were evaluated by echocardiography and on the isolated working heart system. The level of H3K4me3 at the NRG-1 promoter, and both plasma and LV tissue levels of NRG-1 were assessed. The expression of pro-inflammatory cytokines, ECM components and ErbB receptors were assessed by RT-qPCR. MIR resulted in a significant decrease in LV function and enlargement of LV chamber. This was accompanied with a decrease in the level of H3K4me3 at the NRG-1 promoter. Consequently NRG-1 protein levels were reduced in the infarcted myocardium. Subsequently, an upregulated influx of CD68+ macrophages, high expression of MMP-2 and -9 as well as an increase of IL-1β TLR-4, TNF-α TNC expression were observed. In contrast, RIPerc significantly decreased inflammation and improved LV function in association with the enhancement of NRG-1 levels and ErbB3 expression. Conclusions: These findings may reveal a novel anti-remodeling and anti-inflammatory effect of RIPerc, involving activation of NRG-1/ErbB3 signaling.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy