SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guo Jianming) srt2:(2019)"

Sökning: WFRF:(Guo Jianming) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xiong, Shaobing, et al. (författare)
  • Engineering of the Back Contact between PCBM and Metal Electrode for Planar Perovskite Solar Cells with Enhanced Efficiency and Stability
  • 2019
  • Ingår i: Advanced Optical Materials. - : WILEY-V C H VERLAG GMBH. - 2162-7568 .- 2195-1071. ; 7:19
  • Tidskriftsartikel (refereegranskat)abstract
    • The cathode interface plays a critical role in achieving high-performance fullerene/perovskite planar solar cells. Herein, the simple molecule Isatin and its derivatives are introduced at the back contact [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/Al as a cathode modification interlayer. It is revealed that the Isatin interlayers facilitate electron transport/extraction and suppress electron recombination, attributed to the formation of negative dipole potential steps and the passivation of the interfacial trap density. The average power conversion efficiencies of the resulting devices are significantly improved by 11% from 17.68% to 19.74%, with an enhancement in all device parameters including short-circuit current, open-circuit voltage, and fill factor. The hysteresis index is found to disappear. In addition, such interlayer enhances device stability under ambient conditions compared to the control devices due to suppression of moisture-induced degradation of the perovskite films. These findings provide a comprehensive understanding of the engineering of the back contact between PCBM and the metal electrode to improve efficiency and stability of perovskite solar cells.
  •  
2.
  • Yang, Jianming, et al. (författare)
  • Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 11:14, s. 13491-13498
  • Tidskriftsartikel (refereegranskat)abstract
    • The fast evolution of metal halide perovskite solar cells has opened a new chapter in the field of renewable energy. High-quality perovskite films as the active layers are essential for both high efficiency and long-term stability. Here, the perovskite films with enlarged crystal grain size and decreased defect density are fabricated by introducing the extremely low-cost and green polymer, ethyl cellulose (EC), into the perovskite layer. The addition of EC triggers hydrogen bonding interactions between EC and the perovskite, passivating the charge defect traps at the grain boundaries. The long chain of EC further acts as a scaffold for the perovskite structure, eliminating the annealing-induced lattice strain during the film fabrication process. The resulting devices with the EC additive exhibit a remarkably enhanced average power conversion efficiency from 17.11 to 19.27% and an improvement of all device parameters. The hysteresis index is found to decrease by three times from 0.081 to 0.027, which is attributed to suppressed ion migration and surface charge trapping. In addition, the defect passivation by EC significantly improves the environmental stability of the perovskite films, yielding devices that retain 80% of their initial efficiency after 30 days in ambient air at 45% relative humidity, whereas the pristine devices without EC fully degrade. This work provides a low-cost and green avenue for passivating defects that improves both the efficiency and operational stability of perovskite solar cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy