SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Guo Jing Fang) srt2:(2020-2021)"

Sökning: WFRF:(Guo Jing Fang) > (2020-2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Cheng, Shi-Ping, et al. (författare)
  • Haplotype-resolved genome assembly and allele-specific gene expression in cultivated ginger
  • 2021
  • Ingår i: Horticulture Research. - : Springer Nature. - 2052-7276. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Ginger (Zingiber officinale) is one of the most valued spice plants worldwide; it is prized for its culinary and folk medicinal applications and is therefore of high economic and cultural importance. Here, we present a haplotype-resolved, chromosome-scale assembly for diploid ginger anchored to 11 pseudochromosome pairs with a total length of 3.1 Gb. Remarkable structural variation was identified between haplotypes, and two inversions larger than 15 Mb on chromosome 4 may be associated with ginger infertility. We performed a comprehensive, spatiotemporal, genome-wide analysis of allelic expression patterns, revealing that most alleles are coordinately expressed. The alleles that exhibited the largest differences in expression showed closer proximity to transposable elements, greater coding sequence divergence, more relaxed selection pressure, and more transcription factor binding site differences. We also predicted the transcription factors potentially regulating 6-gingerol biosynthesis. Our allele-aware assembly provides a powerful platform for future functional genomics, molecular breeding, and genome editing in ginger.
  •  
2.
  • Fang, Li Tai, et al. (författare)
  • Establishing community reference samples, data and call sets for benchmarking cancer mutation detection using whole-genome sequencing
  • 2021
  • Ingår i: Nature Biotechnology. - : Springer Nature. - 1087-0156 .- 1546-1696. ; 39:9, s. 1151-1160
  • Tidskriftsartikel (refereegranskat)abstract
    • Tumor-normal paired DNA samples from a breast cancer cell line and a matched lymphoblastoid cell line enable calibration of clinical sequencing pipelines and benchmarking 'tumor-only' or 'matched tumor-normal' analyses. The lack of samples for generating standardized DNA datasets for setting up a sequencing pipeline or benchmarking the performance of different algorithms limits the implementation and uptake of cancer genomics. Here, we describe reference call sets obtained from paired tumor-normal genomic DNA (gDNA) samples derived from a breast cancer cell line-which is highly heterogeneous, with an aneuploid genome, and enriched in somatic alterations-and a matched lymphoblastoid cell line. We partially validated both somatic mutations and germline variants in these call sets via whole-exome sequencing (WES) with different sequencing platforms and targeted sequencing with >2,000-fold coverage, spanning 82% of genomic regions with high confidence. Although the gDNA reference samples are not representative of primary cancer cells from a clinical sample, when setting up a sequencing pipeline, they not only minimize potential biases from technologies, assays and informatics but also provide a unique resource for benchmarking 'tumor-only' or 'matched tumor-normal' analyses.
  •  
3.
  • Jia, Kai-Hua, et al. (författare)
  • Chromosome-scale assembly and evolution of the tetraploid Salvia splendens (Lamiaceae) genome
  • 2021
  • Ingår i: Horticulture Research. - : Oxford University Press (OUP). - 2052-7276 .- 2662-6810. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Polyploidization plays a key role in plant evolution, but the forces driving the fate of homoeologs in polyploid genomes, i.e., paralogs resulting from a whole-genome duplication (WGD) event, remain to be elucidated. Here, we present a chromosome-scale genome assembly of tetraploid scarlet sage (Salvia splendens), one of the most diverse ornamental plants. We found evidence for three WGD events following an older WGD event shared by most eudicots (the γ event). A comprehensive, spatiotemporal, genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries, which could be associated with genomic rearrangements, transposable element proximity discrepancies, coding sequence variation, selection pressure, and transcription factor binding site differences. The observed differences between homoeologs may reflect the first step toward sub- and/or neofunctionalization. This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.
  •  
4.
  • Wang, Yi-Tong, et al. (författare)
  • Direct production of biodiesel via simultaneous esterification and transesterification of renewable oils using calcined blast furnace dust
  • 2021
  • Ingår i: Renewable energy. - : Elsevier BV. - 0960-1481 .- 1879-0682. ; 175, s. 1001-1011
  • Tidskriftsartikel (refereegranskat)abstract
    • Direct production of biodiesel by both esterification and transesterification of renewable oils with acid value (AV) of 9.6-28.9 mg KOH/g using calcined blast furnace dust is studied. Blast furnace dust calcined at 600-700 degrees C obviously promotes efficient biodiesel production because of the crystal form transformation from lead sulfate particles in dust into active lead oxide, lead sulfide, and lead particles. It is found for the first time that lead oxide, lead sulfide and lead particles can resist saponification from fatty acids to catalyze raw renewable oils to biodiesel with catalytic activity order as follows: lead oxide > lead > lead sulfide > lead sulfate. Biodiesel production process is optimized according to an orthogonal design with biodiesel yield of 92 wt% obtained at AV of 9.6 mg KOH/g (82 wt% after 5 cycles). Biodiesel yield of 84 wt% is achieved at AV of 28.9 mg KOH/g with acidity of 0.18 mmol/g. Calcined blast furnace dust presents potential applications in the production of biodiesel from renewable oils with high AVs.
  •  
5.
  • Yang, Fu-Sheng, et al. (författare)
  • Chromosome-level genome assembly of a parent species of widely cultivated azaleas
  • 2020
  • Ingår i: Nature Communications. - : Nature Publishing Group. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Azaleas (Ericaceae) comprise one of the most diverse ornamental plants, renowned for their cultural and economic importance. We present a chromosome-scale genome assembly for Rhododendron simsii, the primary ancestor of azalea cultivars. Genome analyses unveil the remnants of an ancient whole-genome duplication preceding the radiation of most Ericaceae, likely contributing to the genomic architecture of flowering time. Small-scale gene duplications contribute to the expansion of gene families involved in azalea pigment biosynthesis. We reconstruct entire metabolic pathways for anthocyanins and carotenoids and their potential regulatory networks by detailed analysis of time-ordered gene co-expression networks. MYB, bHLH, and WD40 transcription factors may collectively regulate anthocyanin accumulation in R. simsii, particularly at the initial stages of flower coloration, and with WRKY transcription factors controlling progressive flower coloring at later stages. This work provides a cornerstone for understanding the underlying genetics governing flower timing and coloration and could accelerate selective breeding in azalea. Azaleas are one of the most diverse ornamental plants and have cultural and economic importance. Here, the authors report a chromosome-scale genome assembly for the primary ancestor of the azalea cultivar Rhododendro simsi and identify transcription factors that may function in flower coloration at different stages.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy