SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hålenius Ulf) srt2:(2005-2009)"

Sökning: WFRF:(Hålenius Ulf) > (2005-2009)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Björling, T., et al. (författare)
  • SrAlSiH : A polyanionic semiconductor hydride
  • 2005
  • Ingår i: Angewandte Chemie International Edition. - : Wiley. - 1433-7851 .- 1521-3773. ; 44:44, s. 7269-7273
  • Tidskriftsartikel (refereegranskat)abstract
    • (Chemical Equation Presented) Stable and semiconducting: Polyanionic hydrides represent a new class of main-group-metal hydrides with unforeseen hydrogen-coordination environments. The hydrogen atom in SrAlSiH is attached exclusively to Al and forms part of a layered [AlHSi]2- polyanion (see figure). This material is the first narrow bandgap semiconductor hydride and combines the high thermal stability of saline hydrides with the air and moisture stability of interstitial transition-metal hydrides.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Fehr, Manuela A., et al. (författare)
  • Iron isotope variations in Holocene sediments of the Gotland Deep, Baltic Sea
  • 2008
  • Ingår i: Geochimica et Cosmochimica Acta. - : Elsevier BV. - 0016-7037 .- 1872-9533. ; 72:3, s. 807-826
  • Forskningsöversikt (refereegranskat)abstract
    • Holocene sediments from the Gotland Deep basin in the Baltic Sea were investigated for their Fe isotopic composition in order to assess the impact of changes in redox conditions and a transition from freshwater to brackish water on the isotope signature of iron. The sediments display variations in delta Fe-56 (differences in the Fe-56/Fe-54 ratio relative to the IRMM-14 standard) from -0.27 +/- 0.09 parts per thousand to +0.21 +/- 0.08 parts per thousand. Samples deposited in a mainly limnic environment with oxygenated bottom water have a mean delta Fe-56 of +0.08 +/- 0.13 parts per thousand, which is identical to the mean Fe isotopic composition of igneous rocks and oxic marine sediments. In contrast, sediments that formed in brackish water under periodically euxinic conditions display significantly lighter Fe isotope signatures with a mean delta Fe-56 of -0.14 +/- 0.19 parts per thousand. Negative correlations of the delta Fe-56 values with the Fe/Al ratio and S content of the samples suggest that the isotopically light Fe in the periodically euxinic samples is associated with reactive Fe enrichments and sulfides. This is supported by analyses of pyrite separates from this unit that have a mean Fe isotopic composition of -1.06 +/- 0.20 parts per thousand for delta Fe-56. The supply of additional Fe with a light Fe isotopic signature can be explained with the shelf to basin Fe shuttle model. According to the Fe shuttle model, oxides and benthic ferrous Fe that is derived from dissimilatory iron reduction from shelves is transported and accumulated in euxinic basins. The data furthermore suggest that the euxinic water has a negative dissolved delta Fe-56 value of about -1.4 parts per thousand to -0.9 parts per thousand. If negative Fe isotopic signatures are characteristic for euxinic sediment formation, widespread euxinia in the past might have shifted the Fe isotopic composition of dissolved Fe in the ocean towards more positive delta Fe-56 values.
  •  
9.
  •  
10.
  • Grew, Edward S., et al. (författare)
  • Recommended nomenclature for the sapphirine and surinamite groups (sapphirine supergroup)
  • 2008
  • Ingår i: Mineralogical magazine. - : Mineralogical Society. - 0026-461X .- 1471-8022. ; 72, s. 839-876
  • Tidskriftsartikel (refereegranskat)abstract
    • Minerals isostructural with sapphirine-1A, sapphirine-2M, and surinamite are closely related chain silicates that pose nomenclature problems because of the large number of sites and potential constituents, including several (Be, B, As, Sb) that are rare or absent in other chain silicates. Our recommended nomenclature for the sapphirine group (formerly aenigmatite group) makes extensive use of precedent, but applies the rules to all known natural compositions, with flexibility to allow for yet undiscovered compositions such as those reported in synthetic materials. These minerals are part of a polysomatic series composed of pyroxene or pyroxene-like and spinel modules, and thus we recommend that the sapphirine supergroup should encompass the polysomatic series. The first level in the classification is based on polysome, i.e. each group within the supergroup corresponds to a single polysome. At the second level, the sapphirine group is divided into subgroups according to the occupancy of the two largestMsites, namely, sapphirine (Mg), aenigmatite (Na), and rhönite (Ca). Classification at the third level is based on the occupancy of the smallestMsite with most shared edges,M7, at which the dominant cation is most often Ti (aenigmatite, rhönite, makarochkinite), Fe3+(wilkinsonite, dorrite, høgtuvaite) or Al (sapphirine, khmaralite); much less common is Cr (krinovite) and Sb (welshite). At the fourth level, the two most polymerizedTsites are considered together, e.g. ordering of Be at these sites distinguishes høgtuvaite, makarochkinite and khmaralite. Classification at the fifth level is based on XMg= Mg/(Mg + Fe2+) at theMsites (excluding the two largest andMl). In principle, this criterion could be expanded to include other divalent cations at these sites, e.g. Mn. To date, most minerals have been found to be either Mg-dominant (XMg> 0.5), or Fe2+-dominant (XMg< 0.5), at theseMsites. However, XMgranges from 1.00 to 0.03 in material described as rhönite, i.e. there are two species present, one Mg-dominant, the other Fe2+-dominant. Three other potentially new species are a Mg-dominant analogue of wilkinsonite, rhönite in the Allende meteorite, which is distinguished from rhonite and dorrite in that Mg rather than Ti or Fe3+is dominant atMl, and an Al-dominant analogue of sapphirine, in which Al > Si at the two most polymerizedTsitesvs. Al < Si in sapphirine. Further splitting of the supergroup based on occupancies other than those specified above is not recommended.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy