SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Haanes Kristian A.) srt2:(2019)"

Sökning: WFRF:(Haanes Kristian A.) > (2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edvinsson, Jacob C.A., et al. (författare)
  • C-fibers may modulate adjacent Aδ-fibers through axon-axon CGRP signaling at nodes of Ranvier in the trigeminal system
  • 2019
  • Ingår i: Journal of Headache and Pain. - : Springer Science and Business Media LLC. - 1129-2369 .- 1129-2377. ; 20:1
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Monoclonal antibodies (mAbs) towards CGRP or the CGRP receptor show good prophylactic antimigraine efficacy. However, their site of action is still elusive. Due to lack of passage of mAbs across the blood-brain barrier the trigeminal system has been suggested a possible site of action because it lacks blood-brain barrier and hence is available to circulating molecules. The trigeminal ganglion (TG) harbors two types of neurons; half of which store CGRP and the rest that express CGRP receptor elements (CLR/RAMP1). METHODS: With specific immunohistochemistry methods, we demonstrated the localization of CGRP, CLR, RAMP1, and their locations related to expression of the paranodal marker contactin-associated protein 1 (CASPR). Furthermore, we studied functional CGRP release separately from the neuron soma and the part with only nerve fibers of the trigeminal ganglion, using an enzyme-linked immunosorbent assay. RESULTS: Antibodies towards CGRP and CLR/RAMP1 bind to two different populations of neurons in the TG and are found in the C- and the myelinated Aδ-fibers, respectively, within the dura mater and in trigeminal ganglion (TG). CASPR staining revealed paranodal areas of the different myelinated fibers inhabiting the TG and dura mater. Double immunostaining with CASPR and RAMP1 or the functional CGRP receptor antibody (AA58) revealed co-localization of the two peptides in the paranodal region which suggests the presence of the CGRP-receptor. Double immunostaining with CGRP and CASPR revealed that thin C-fibers have CGRP-positive boutons which often localize in close proximity to the nodal areas of the CGRP-receptor positive Aδ-fibers. These boutons are pearl-like synaptic structures, and we show CGRP release from fibers dissociated from their neuronal bodies. In addition, we found that adjacent to the CGRP receptor localization in the node of Ranvier there was PKA immunoreactivity (kinase stimulated by cAMP), providing structural possibility to modify conduction activity within the Aδ-fibers. CONCLUSION: We observed a close relationship between the CGRP containing C-fibers and the Aδ-fibers containing the CGRP-receptor elements, suggesting a point of axon-axon interaction for the released CGRP and a site of action for gepants and the novel mAbs to alleviate migraine.
  •  
2.
  • Christensen, Simon T., et al. (författare)
  • MEK1/2 inhibitor U0126, but not nimodipine, reduces upregulation of cerebrovascular contractile receptors after subarachnoid haemorrhage in rats
  • 2019
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular pathophysiological changes after haemorrhagic stroke, such as phenotypic modulation of the cerebral arteries and cerebral vasospasms, are associated with delayed cerebral ischemia (DCI) and poor outcome. The only currently approved drug treatment shown to reduce the risk of DCI and improve neurologic outcome after aneurysmal subarachnoid haemorrhage (SAH) is nimodipine, a dihydropyridine L-type voltage-gated Ca 2+ channel blocker. MEK1/2 mediated transcriptional upregulation of contractile receptors, including endothelin-1 (ET-1) receptors, has previously been shown to be a factor in the pathology of SAH. The aim of the study was to compare intrathecal and subcutaneous treatment regimens of nimodipine and intrathecal treatment regimens of U0126, a MEK1/2 inhibitor, in a single injection experimental rat SAH model with post 48 h endpoints consisting of wire myography of cerebral arteries, flow cytometry of cerebral arterial tissue and behavioural evaluation. Following ET-1 concentration-response curves, U0126 exposed arteries had a significantly lower ET-1 max than vehicle arteries. Arteries from both the intrathecal- and subcutaneous nimodipine treated animals had significantly higher ET-1 max contractions than the U0126 arteries. Furthermore, Ca 2+ concentration response curves (precontracted with ET-1 and in the presence of nimodipine) showed that nimodipine treatment could result in larger nimodipine insensitive contractions compared to U0126. Flow cytometry showed decreased protein expression of the ET B receptor in U0126 treated cerebral vascular smooth muscle cells compared to vehicle. Only U0126 treatment lowered ET-1 max contractions and ET B receptor levels, as well as decreased the contractions involving nimodipine-insensitive Ca 2+ channels, when compared to both intrathecal and subcutaneous nimodipine treatment. This indicate that targeting gene expression might be a better strategy than blocking specific receptors or ion channels in future treatments of SAH.
  •  
3.
  • Christensen, Simon T., et al. (författare)
  • Pre-clinical effects of highly potent MEK1/2 inhibitors on rat cerebral vasculature after organ culture and subarachnoid haemorrhage
  • 2019
  • Ingår i: Clinical Science. - 0143-5221. ; 133:16, s. 1797-1811
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aneurysmal subarachnoid haemorrhage (SAH) is a variant of haemorrhagic stroke with a striking 50% mortality rate. In addition to the initial insult, secondary delayed brain injury may occur days after the initial ischemic insult and is associated with vasospasms leading to delayed cerebral ischemia. We have previously shown that the MEK1/2 inhibitor U0126 improves neurological assessment after SAH in rats. Aim: The purpose of the present study was to analyse the impact of a broad selection of high potency MEK1/2 inhibitors in an organ culture model and use the IC50 values obtained from the organ culture to select highly potent inhibitors for pre-clinical in vivo studies. Results: Nine highly potent mitogen activated protein kinase kinase (MEK1/2) inhibitors were screened and the two most potent inhibitors from the organ culture screening, trametinib and PD0325901, were tested in an in vivo experimental rat SAH model with intrathecal injections. Subsequently, the successful inhibitor trametinib was administered intraperitoneally in a second in vivo study. In both regimens, trametinib treatment caused significant reductions in the endothelin-1 induced contractility after SAH, which is believed to be associated with endothelin B receptor up-regulation. Trametinib treated rats showed improved neurological scores, evaluated by the ability to traverse a rotating pole, after induced SAH. Conclusion: The PD0325901 treatment did not improve the neurological score after SAH, nor showed any beneficial therapeutic effect on the contractility, contrasting with the reduction in neurological deficits seen after trametinib treatment. These data show that trametinib might be a potential candidate for treatment of SAH.
  •  
4.
  • Frederiksen, Simona D., et al. (författare)
  • Perivascular neurotransmitters : Regulation of cerebral blood flow and role in primary headaches
  • 2019
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 0271-678X. ; 39:4, s. 610-632
  • Tidskriftsartikel (refereegranskat)abstract
    • In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone. These findings support a role for the vasculature in primary headache disorders. Moreover, neuronal hyperexcitability and other abnormalities have been observed in primary headaches and related to changes in hemodynamic factors. In particular, this relates to migraine aura and spreading depression. During headache attacks, ganglia such as trigeminal and sphenopalatine (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders.
  •  
5.
  • Haanes, Kristian A., et al. (författare)
  • Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models
  • 2019
  • Ingår i: Cephalalgia. - : SAGE Publications. - 0333-1024 .- 1468-2982. ; 39:11, s. 1421-1434
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The current understanding of mechanisms behind migraine pain has been greatly enhanced with the recent therapies targeting calcitonin gene-related peptide and its receptor. The clinical efficacy of calcitonin gene-related peptide-blocking drugs indicates that, at least in a considerable proportion of patients, calcitonin gene-related peptide is a key molecule in migraine pain. There are several receptors and molecular pathways that can affect the release of and response to calcitonin gene-related peptide. One of these could be purinergic receptors that are involved in nociception, but these are greatly understudied with respect to migraine. Objective: We aimed to explore purinergic receptors as potential anti-migraine targets. Methods: We used the human middle meningeal artery as a proxy for the trigeminal system to screen for possible anti-migraine candidates. The human findings were followed by intravital microscopy and calcitonin gene-related peptide release measurements in rodents. Results: We show that the purinergic P2Y13 receptor fulfills all the features of a potential anti-migraine target. The P2Y13 receptor is expressed in both the human trigeminal ganglion and middle meningeal artery and activation of this receptor causes: a) middle meningeal artery contraction in vitro; b) reduced dural artery dilation following periarterial electrical stimulation in vivo and c) a reduction of CGRP release from both the dura and the trigeminal ganglion in situ. Furthermore, we show that P2X3 receptor activation of the trigeminal ganglion causes calcitonin gene-related peptide release and middle meningeal artery dilation. Conclusion: Both an agonist directed at the P2Y13 receptor and an antagonist of the P2X3 receptor seem to be viable potential anti-migraine therapies.
  •  
6.
  • Ohlsson, Lena, et al. (författare)
  • Erenumab (AMG 334), a monoclonal antagonist antibody against the canonical CGRP receptor, does not impair vasodilatory or contractile responses to other vasoactive agents in human isolated cranial arteries
  • 2019
  • Ingår i: Cephalalgia. - : SAGE Publications. - 0333-1024 .- 1468-2982. ; 39:14, s. 1745-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Calcitonin gene-related peptide (CGRP) is a neuronal transmitter present in intracranial sensory nerves, where it is involved in migraine pathophysiology as well as other biological functions. Recently, the fully human monoclonal antibody erenumab (AMG 334), which targets the canonical calcitonin gene-related peptide receptor, showed significant prophylactic efficacy and favourable safety in phase II and III clinical trials for episodic and chronic migraine and is now approved for migraine prevention in several countries. Objective: Given that calcitonin gene-related peptide can mediate vasodilation, we investigated the effect of erenumab on vasoactive responses in the presence or absence of various vasodilatory and vasocontractile mediators in a model using isolated human cerebral and meningeal arteries. Methods: Ring segments of human isolated cerebral and meningeal arteries were mounted in a sensitive myograph. On arterial segments pre-contracted with 30 mM potassium chloride, vasoactive responses to calcitonin gene-related peptide were studied in the presence of different concentrations of erenumab. At the maximal tested inhibitory concentration of erenumab (100 nM), functional arterial relaxation in response to nicardipine or substance P, and the contractile responses to sumatriptan and dihydroergotamine were examined. Results: 30 mM potassium chloride produced a stable contraction of the vessel segments and calcitonin gene-related peptide induced a concentration-dependent relaxation. We observed that (i) erenumab had no direct contractile or relaxant effects per se (by itself), (ii) pre-treatment with erenumab antagonized the calcitonin gene-related peptide-induced relaxation in a competitive manner, (iii) the relaxant responses to nicardipine or substance P were unaffected in the presence of erenumab and (iv) the contraction induced by sumatriptan or dihydroergotamine was not modified by erenumab. Conclusion: Our findings demonstrate that erenumab, while not associated with vasoactive properties per se, specifically inhibits calcitonin gene-related peptide-induced relaxation of cranial arteries without impacting vasodilatory responses or contractile responses of endogenous or pharmacological vasoactive compounds.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy