SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hallbeck Martin) srt2:(2000-2004)"

Search: WFRF:(Hallbeck Martin) > (2000-2004)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Engblom, David, et al. (author)
  • Distribution of prostaglandin EP3 and EP4 receptor mRNA in the rat parabrachial nucleus
  • 2000
  • In: Neuroscience Letters. - : Elsevier Science B.V., Amsterdam.. - 0304-3940 .- 1872-7972. ; 281:2-3, s. 163-166
  • Journal article (peer-reviewed)abstract
    • By using in situ hybridization, the distribution of mRNA for the PGE2 receptors EP3 and EP4 was examined in the rat parabrachial nucleus (PB), a major brain stem relay for autonomic and nociceptive processing. EP3 receptor mRNA was present in most subnuclei, with the densest labeling in the external lateral, dorsal lateral, superior lateral, central lateral and Kölliker–Fuse nuclei. EP4 receptor mRNA expressing cells had a more restricted distribution, largely being confined to the superior lateral and adjacent parts of the dorsal and central lateral nuclei in a pattern complementary to that for EP3 receptor mRNA. These findings suggest that EP3 and EP4 receptors in PB have distinct functional roles that include nociceptive processing, blood pressure regulation and feeding behavior.
  •  
2.
  • Hallbeck, Martin, 1970- (author)
  • Dynorphin mRNA-expressing neurons in the rat paraventricular hypothalamic nucleus project to the spinal cord
  • 2000
  • In: Neuroscience Letters. - 0304-3940 .- 1872-7972. ; 285:3, s. 161-164
  • Journal article (peer-reviewed)abstract
    • The opioid peptide dynorphin is important for the regulation of neuronal activity in the spinal cord. Because dynorphin is produced by neurons throughout the neuraxis, there are many putative sources for spinal dynorphin fibers, in addition to those originating from spinal cord neurons. Using a sensitive double-labeling technique combining in situ hybridization and tract tracing, the present study demonstrates that the paraventricular hypothalamic nucleus (PVH) of adult naı̈ve male Sprague–Dawley rats contains large numbers of dynorphin mRNA-producing cells with projections to the spinal cord. Thus, more than 40% of the spinally projecting neurons in PVH were found to express dynorphin mRNA. This novel finding suggests that the PVH is a major source of spinal dynorphin that may be of importance for the processing of pain and visceral information.
  •  
3.
  • Hallbeck, Martin, 1970-, et al. (author)
  • Neuropeptide expression in rat paraventricular hypothalamic neurons that project to the spinal cord
  • 2001
  • In: Journal of Comparative Neurology. - : Wiley. - 0021-9967 .- 1096-9861. ; 433:2, s. 222-238
  • Journal article (peer-reviewed)abstract
    • The paraventricular hypothalamic nucleus (PVH) exerts many of its regulatory functions through projections to spinal cord neurons that control autonomic and sensory functions. By using in situ hybridization histochemistry in combination with retrograde tract tracing, we analyzed the peptide expression among neurons in the rat PVH that send axons to the spinal cord. Projection neurons were labeled by immunohistochemical detection of retrogradely transported cholera toxin subunit B, and radiolabeled long riboprobes were used to identify neurons containing dynorphin, enkephalin, or oxytocin mRNA. Of the spinally projecting neurons in the PVH, approximately 40% expressed dynorphin mRNA, 40% expressed oxytocin mRNA, and 20% expressed enkephalin mRNA. Taken together with our previous findings on the distribution of vasopressin-expressing neurons in the PVH (Hallbeck and Blomqvist [1999] J. Comp. Neurol. 411:201–211), the results demonstrated that the different PVH subdivisions display distinct peptide expression patterns among the spinal cord–projecting neurons. Thus, the lateral parvocellular subdivision contained large numbers of spinal cord–projecting neurons that express any of the four investigated peptides, whereas the ventral part of the medial parvocellular subdivision displayed a strong preponderance for dynorphin- and vasopressin-expressing cells. The dorsal parvocellular subdivision almost exclusively contained dynorphin- and oxytocin-expressing spinal cord–projecting neurons. This parcellation of the peptide-expressing neurons suggested a functional diversity among the spinal cord–projecting subdivisions of the PVH that provide an anatomic basis for its various and distinct influences on autonomic and sensory processing at the spinal level.
  •  
4.
  • Hallbeck, Martin, 1970- (author)
  • Peptidergic projections from the rat paraventricular hypothalamic nucleus to the spinal cord
  • 2000
  • Doctoral thesis (other academic/artistic)abstract
    • The survival of the organism is dependent on keeping a balanced internal milieu in an ever-changing environment The process to achieve this balance is called homeostasis and it is accomplished by the consonant action of the endocrine system and the autonomic nervous system. Specific parts of the central nervous system (CNS) control these systems in response to various sensory inputs. One of the key sites for the coordinated action of these two homeostasis systems is the paraventricular hypothalamic nucleus (PVH). Tirrough its projections to the pituitary the PVH controls the release of different hormones. In addition, it projects heavily to brain stem and spinal cord autonomic centers. Furthermore, the PVH projects to the superficial layers of the spinal cord, where nerve fibers conveying pain and temperature modalities terminate. Thus, in addition to its motor control of the homeostasis system, the PVH may influence the processing of sensory inputs that are important for homeostatic regulation. The aim of this thesis was to investigate some aspects of the organization and function of the neuronal pathways projecting from the PVH to the spinal cord in the rat.Vasopressin, which is a peptide that is synthesized by PVH neurons, has been proposed to regulate several different processes in the spinal cord. However, the source of vasopressin fibers within the spinal cord has been a matter of some dispute. Thus, firstly, we investigated the distribution of neurons expressing vasopressin mRNA in the naive rat, thereby providing the first complete screening of the CNS for this neuropeptide at the mRNA level. The results confmn some earlier work, but also demonstrate several new sites of vasopressin mRNA synthesis. Some sites previously thought to produce vasopressin displayed no vasopressin mRNA. Our results show that the PVH is the only putative site of spinally-projecting vasopressin neurons in the naive rat Hence, all functions exerted by vasopressin in the spinal cord are likely to be controlled by the PVH.Secondly, we examined the neurochemical profile of the PVH neurons that project to the spinal cord. We show that 41% of these neurons express dynorphin mRNA, 20% express enkephalin mRNA, 38% express oxytocin mRNA, and 42% express vasopressin mRNA. This is the first time that dynorphin has been shown in PVH neurons with spinal projections, and the figures for the other peptides are substantially higher than what has been reported in previous shldies. In addition, we demonstrate that each of the spinal cord projecting subdivisions of the PVH displays distinct peptide expression patterns.Thirdly, we investigated the physiological effect of the PVH on nociceptive transmission in the spinal cord dorsal horn. However, with the present experimental approach we could not show a consistent effect of PVH stimulation on nociceptive neurons in the spinal dorsal horn. The varying results we achieved are ascribed to the functional heterogeneity of the PVH as revealed by our previous studies.The present data contribute to the nnderstanding of the complex organization of the PVH. The parcellation of peptide-expressing neurons into distinct spinal cord projecting subnuclei is likely to reflect distinct functional roles of these subnuclei, and may provide the anatomical basis for the ability of the PVH to control many different processes in the spinal cord The nnderstanding of the physiological profile of these different subnuclei will provide insight into the control of homeostasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view