SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hallbeck Martin) srt2:(2010-2013)"

Sökning: WFRF:(Hallbeck Martin) > (2010-2013)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Agholme, Lotta, et al. (författare)
  • Amyloid-β Secretion, Generation, and Lysosomal Sequestration in Response to Proteasome Inhibition : Involvement of Autophagy
  • 2012
  • Ingår i: Journal of Alzheimer's Disease. - : I O S Press. - 1387-2877 .- 1875-8908. ; 31:2, s. 343-358
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteasome is important for degradation of worn out and misfolded proteins. Decreased proteasome activity has been implicated in Alzheimer's disease (AD). Proteasome inhibition induces autophagy, but it is still unknown whether autophagy is beneficial or deleterious to AD neurons, as the autophagosome has been suggested as a site of amyloid-β (Aβ) generation. In this study, we investigated the effect of proteasome inhibition on Aβ accumulation and secretion, as well as the processing of amyloid-β protein precursor (AβPP) in AβPPSwe transfected SH-SY5Y neuroblastoma cells. We show that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome makes C99 available for γ-secretase cleavage, leading to Aβ generation. Inhibition of autophagy after proteasome inhibition led to reduced levels of intracellular, but not secreted Aβ, and tended to further increase the C99 to AβPP ratio, supporting involvement of the autophagosome in Aβ generation. Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease in cellular viability was also detected, it is possible that upregulation of autophagy is an unsuccessful rescue mechanism, which instead of being protective, contributes to AD pathogenesis.
  •  
2.
  • Agholme, Lotta, et al. (författare)
  • An In Vitro Model for Neuroscience: Differentiation of SH-SY5Y Cells into Cells with Morphological and Biochemical Characteristics of Mature Neurons
  • 2010
  • Ingår i: Journal of Alzheimer's Disease. - : Ios Press. - 1387-2877 .- 1875-8908. ; 20:4, s. 1069-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroscience, including research on Alzheimers disease, is hampered by the lack of suitable in vitro models to study the human nervous system. To counteract this, many attempts to differentiate cell lines into more neuron-like cells have been performed, resulting in partial expression of neuronal features. Furthermore, it has been reported that neuroblastoma cell lines lack mature isoforms of tau. Our aim was to develop an improved in vitro model, generating sustainable cells with morphology and biochemistry of human, mature neurons. To obtain cells with neuronal differentiation and function, we investigated the effect of combining three-dimensional culturing of SH-SY5Y cells in extracellular matrix (ECM) gel with several factors reported to have neuro-differentiating effects. This resulted in cells with apparent neuronal morphology with long, extensively branched neurites. Further investigation revealed expression of several neurospecific markers including synapse protein Sv2 and nuclear marker NeuN, as well as the presence of synapses and axonal vesicle transport. In addition, these cells expressed mature tau isoforms, and tau protein expression was significantly increased compared to undifferentiated cells, reaching levels found in adult human brain. In conclusion, we found that pre-treatment with retinoic acid followed by ECM gel culturing in combination with brain derived neurotrophic factor, neuregulin beta(1), nerve growth factor, and vitamin D-3 treatment generated sustainable cells with unambiguous resemblance to adult neurons. These cells also expresses adult splicing forms of tau with neuronal localization, making this cellular in vitro model useful in many areas of neuroscience research, particularly the Alzheimers disease field.
  •  
3.
  • Agholme, Lotta (författare)
  • The involvement of degradation pathways and neuron-to-neuron transmission in Alzheimer’s disease
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Although the vast majority of Alzheimer’s disease (AD) cases are of the sporadic type, mutations causing the familial form have been the focus of AD research for decades. The disease is pathologically characterised by β-amyloid (Aβ) and tau protein aggregates in neuritic plaques and neurofibrillary tangles. Furthermore, it is known that AD pathology spreads throughout the brain, most often along the same anatomical pattern. However, so far no cause for the sporadic form of the disease has been found. Accumulation of protein aggregates as well as decreased activity of the protein degradation systems, lysosomes and proteasomes, is found in diseased brains. This indicates that defective degradation contributes to sporadic AD.The aim of this thesis was to develop an improved neuronal model, and study the effects of decreased proteasome function on tau phosphorylation and axonal transport. In addition, the effects on Aβ accumulation and generation upon proteasome inhibition were investigated. Finally, the possibility that intracellularly accumulated Aβ oligomers could be transferred from one neuron to another was tested.Differentiation of human SH-SY5Y neuroblastoma cells in an extracellular matrix gel, using a set of neurotrophic factors, resulted in cells with neuronal phenotype, expressing neuron specific markers and all six adult isoforms of tau. Within this neuronal model, we found that reduced proteasome activity inhibited neuritic transport, and caused tau phosphorylation in a c-Jun and ERK 1/2 dependent manner. Using proteasome inhibition in APP overexpressing cells, we found an autophagy dependent intralysosomal Aβ accumulation, together with elevation of intra- and extracellular concentrations of Aβ. Autophagy inhibition protected the cells from the toxicity induced by decreased proteasome activity. Finally, we could, as the first group, show that Aβ can be directly transferred from one neuron to another through connected neurites. Furthermore, accumulation of Aβ in the endo-lysosomal compartment of receiving cells caused toxicity and neurodegeneration.We believe that cells not able to degrade accumulated Aβ, due to increased generation or reduced degradative capacity, instead tries to clear its content through transfer to connected neurons. If not properly degraded in the receiving cell, this can accelerate AD pathology and cause neuritic and neuronal degeneration spreading throughout the brain. Increasing the activity of the degradative systems, or inhibiting transmission of Aβ between neurons could therefore be novel treatments for AD.
  •  
4.
  • Bjartmar, Lisa, 1966-, et al. (författare)
  • Long-term treatment with antidepressants, but not environmental stimulation, induces expression of NP2 mRNA in hippocampus and medial habenula
  • 2010
  • Ingår i: Brain Research. - : Elsevier. - 0006-8993 .- 1872-6240. ; 1328, s. 24-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal Pentraxin 2 (NP2, Narp), known to mediate clustering of glutamatergic AMPA receptors at synapses, is involved in activity-dependent synaptogenesis and synaptic plasticity. In experimental settings, antidepressant treatment as well as a stimulating environment has a positive influence on cognition and hippocampal plasticity. This study demonstrates that NP2 mRNA is robustly expressed in the hippocampus and the medial habenula (MHb), both regions implicated in cognitive functions. Furthermore, NP2 mRNA expression is enhanced in the hippocampal subregions as well as in the MHb after long-term treatment with antidepressant drugs of various monoaminergic profiles, indicating a common mode of action of different antidepressant drugs. This effect occurs at the time frame where clinical response is normally achieved. In contrast, neither environmental enrichment nor deprivation has any influence on long-term NP2 mRNA expression. These findings support an involvement of NP2 in the pathway of antidepressant induced plasticity, but not EE induced plasticity; that NP2 might constitute a common link for the action of different types of antidepressant drugs and that the MHb could be a putative region for further studies of NP2.
  •  
5.
  •  
6.
  • Hallbeck, Martin, et al. (författare)
  • Neuron-to-Neuron Transmission of Neurodegenerative Pathology
  • 2013
  • Ingår i: The Neuroscientist. - : Sage Publications. - 1073-8584 .- 1089-4098. ; 19:6, s. 560-566
  • Forskningsöversikt (refereegranskat)abstract
    • One of the hallmarks of neurodegenerative dementia diseases is the progressive loss of mental functions and the ability to manage activities of daily life. This progression is caused by the spread of the disease to more and more brain areas via anatomical connections. The pathophysiological process responsible for this spread of disease has long been sought after. There has been an increased understanding that the driving force of these neurodegenerative diseases could be the small, soluble intraneuronal accumulations of neurodegenerative proteins rather than the large, extracellular accumulations. Recently we have shown that the mechanism of spread of Alzheimer's disease most likely depends on the neuron-to-neuron spread of such soluble intraneuronal accumulations of -amyloid through neuritic connections. Similar transmissions have been shown for several other neurodegenerative proteins but little is known about the cellular mechanisms and about any potential strategies that might stop this spread. Resolving these questions requires good cellular models. We have established a unique model of synaptic transmission between human neuronal-like cells, something that has previously been difficult to target. This opens the possibility of developing potential inhibitors of progression of these devastating diseases.
  •  
7.
  • Nath, Sangeeta, et al. (författare)
  • Spreading of Neurodegenerative Pathology via Neuron-to-Neuron Transmission of beta-Amyloid
  • 2012
  • Ingår i: Journal of Neuroscience. - : SOC NEUROSCIENCE. - 0270-6474 .- 1529-2401. ; 32:26, s. 8767-8777
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimers disease (AD) is the major cause of dementia. During the development of AD, neurofibrillary tangles progress in a fixed pattern, starting in the transentorhinal cortex followed by the hippocampus and cortical areas. In contrast, the deposition of beta-amyloid (A beta) plaques, which are the other histological hallmark of AD, does not follow the same strict spatiotemporal pattern, and it correlates poorly with cognitive decline. Instead, soluble A beta oligomers have received increasing attention as probable inducers of pathogenesis. In this study, we use microinjections into electrophysiologically defined primary hippocampal rat neurons to demonstrate the direct neuron-to-neuron transfer of soluble oligomeric A beta. Additional studies conducted in a human donor-acceptor cell model show that this A beta transfer depends on direct cellular connections. As the transferred oligomers accumulate, acceptor cells gradually show beading of tubulin, a sign of neurite damage, and gradual endosomal leakage, a sign of cytotoxicity. These observations support that intracellular A beta oligomers play a role in neurodegeneration, and they explain the manner in which A beta can drive disease progression, even if the extracellular plaque load is poorly correlated with the degree of cognitive decline. Understanding this phenomenon sheds light on the pathophysiological mechanism of AD progression. Additional elucidation will help uncover the detailed mechanisms responsible for the manner in which AD progresses via anatomical connections and will facilitate the development of new strategies for stopping the progression of this incapacitating disease.
  •  
8.
  • Ungerbäck, Jonas (författare)
  • Inflammation and Intestinal Homeostasis-Associated Genes in Colorectal Cancer
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Colorectal cancer (CRC) is a global ‘killer’ and every year more than 1.2 million new individuals are affected and approximately 600 000 succumb to the disorder. Several mechanisms such as inactivation of tumor suppressor genes, activation of oncogenes and dysregulation of cell fate determinating pathways e.g. Wnt and Notch can initiate a cancerous cell growth and promote colorectal tumorigenesis. In addition, most tumors are exposed to an inflammatory environment, which together with the presence of mitogenic and angiogenic signals may sustain several hallmarks of cancer. Genetic alterations in inflammatory genes are associated with chronic inflammatory bowel disease, which is a strong risk factor of developing CRC. Scientists have for a long time looked for ‘the Key’ that would unlock the ‘cancer door’ but more likely cancer should be considered as not one but many diseases where almost every single patient is genetically and clinically unique. Hence recent research has turned to identify such inter-individual discrepancies and to find disease markers and strategies for guiding clinicians when tailoring individual management and optimized therapy. A deeper understanding of the regulation and genetic variation of inflammation and intestinal-homeostasis associated genes is pivotal to find potential targets for future therapies.The present thesis focuses on genetic variation and alterations in inflammatory genes as well as genes specifically involved in maintaining intestinal homeostasis. The most common anti-inflammatory drugs, NSAIDs, inhibit the prostanoid-generating COX-enzymes and are associated with decreased CRC risk when administered for a long time. Unfortunately, continuous NSAID treatment may lead to severe side-effects such as gastrointestinal bleeding, possibly through the ablation of non-PGE2 prostanoids. Therefore, a more specific inhibition of PGE2 has been suggested to be superior to classical NSAIDs. In papers I and II, the terminal PGE2 generating enzyme mPGES1 was studied in the context of intestinal cancer. Unexpectedly, ApcMin/+ mice with a targeted deletion of the mPGES1 encoding gene displayed significantly more and larger intestinal adenomas as compared to their wilde-type (wt) littermates. Probably this was due to the redirected generation of PGE2 towards non-PGE2 prostanoids seen in the murine tumors, resulting in enhanced pro-tumorigenic activity of these transmitter substances. Next, with a battery of functional and descriptive assays we investigated whether the outcome of mPGES1 expression and activity could depend on the genetic profile of the tumor e.g. the Apc mutational status. Indeed, high expression of mPGES1 was associated with the presence of wt-Apc, both in vitro and in vivo, most likely depending on mPGES1 mRNA stabilization rather than upregulation through β–catenin/Lef/Tcf4 signaling.NFκB is a major regulator of inflammation e.g. through the production of inflammatory cytokines. Variations in genes controlling inflammation and angiogenesis could potentially be used as biomarkers to identify patients with increased risk of CRC development, and/or to identify those with high risk of a rapidly progressing disease. Further, such analyzes have been suggested to select patients, which may benefit from specific anti-inflammatory or anti-angiogenic therapies. In paper III, genetic alterations in NFκB associated genes were studied among CRC patients and healthy controls. The NFκB negative regulator TNFAIP3 was found to exert tumor suppressive functions in CRC and moreover, homozygous mutant TNFAIP3 (rs6920220), homozygous mutant NFκB -94 ATTG ins/del and heterozygous NLRP3 (Q705K) were identified as prognostic markers for identifying CRC patients with a high risk of rapid progression. Further studies, which focus on the potential to treat such patients with anti-inflammatory IL-1β targeting therapies, are warranted.In the intestinal epithelium, Notch and Wnt signaling function in synergy to maintain homeostasis and together these pathways promote stem cell renewal and drive proliferation. Thus, dysregulation and/or overactivation of one of the two pathways could potentially lead to simultaneous activation of the other. While the genetic mechanisms explaining aberrant Wnt signaling in CRC are well-known, the reasons for the Notch pathway activation are less so. Further, relatively little is known about the mechanisms linking the two pathways in CRC. In paper IV, we addressed this question with a set of experimental in vitro assays, hereby identifying Notch2 together with several additional genes classically belonging to the Notch pathway, as putative targets for canonical and non-canonical Wnt signaling. We therefore suggest that aberrant Notch signaling in colon cancer cells may be the result of dysregulated Wnt signaling.In summary, the results here presented add a couple of pieces to the immensely complex jigsaw puzzle connecting intestinal homeostasis, inflammation and CRC. These results may aid in identifying future biomarkers or potential drug targets that could take us to the next level in the war against cancer.
  •  
9.
  • Zheng, Lin, et al. (författare)
  • Intracellular distribution of amyloid beta peptide and its relationship to the lysosomal system.
  • 2012
  • Ingår i: Translational Neurodegeneration. - : BioMed Central. - 2047-9158. ; 1:1, s. 19-
  • Tidskriftsartikel (refereegranskat)abstract
    • BackgroundAmyloid beta peptide (Aβ) is the main component of extraneuronal senile plaques typical of Alzheimer’s disease (AD) brains. Although Aβ is produced by normal neurons, it is shown to accumulate in large amounts within neuronal lysosomes in AD. We have recently shown that under normal conditions the majority of Aβ is localized extralysosomally, while oxidative stress significantly increases intralysosomal Aβ content through activation of macroautophagy. It is also suggested that impaired Aβ secretion and resulting intraneuronal increase of Aβ can contribute to AD pathology. However, it is not clear how Aβ is distributed inside normal neurons, and how this distribution is effected when Aβ secretion is inhibited.MethodsUsing retinoic acid differentiated neuroblastoma cells and neonatal rat cortical neurons, we studied intracellular distribution of Aβ by double immunofluorescence microscopy for Aβ40 or Aβ42 and different organelle markers. In addition, we analysed the effect of tetanus toxin-induced exocytosis inhibition on the intracellular distribution of Aβ.ResultsUnder normal conditions, Aβ was found in the small cytoplasmic granules in both neurites and perikarya. Only minor portion of Aβ was colocalized with trans-Golgi network, Golgi-derived vesicles, early and late endosomes, lysosomes, and synaptic vesicles, while the majority of Aβ granules were not colocalized with any of these structures. Furthermore, treatment of cells with tetanus toxin significantly increased the amount of intracellular Aβ in both perikarya and neurites. Finally, we found that tetanus toxin increased the levels of intralysosomal Aβ although the majority of Aβ still remained extralysosomally.ConclusionOur results indicate that most Aβ is not localized to Golgi-related structures, endosomes, lysosomes secretory vesicles or other organelles, while the suppression of Aβ secretion increases intracellular intra- and extralysosomal Aβ.
  •  
10.
  • Zheng, Lin, et al. (författare)
  • Intracellular localization of amyloid beta peptide in SH-SY5Y neuroblastoma cells
  • 2013
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 37:4, s. 713-733
  • Tidskriftsartikel (refereegranskat)abstract
    • Amyloid-beta peptide (A beta), the main component of Alzheimer's disease (AD) senile plaques, has been found to accumulate within the lysosomal compartment of AD neurons. We have previously shown that in differentiated SH-SY5Y neuroblastoma cells cultured under normal conditions, the majority of A beta is localized extralysosomally, while oxidative stress significantly increases intralysosomal A beta content through activation of macroautophagy. It is, however, not clear which cellular compartments contain extralysosomal A beta in intact SH-SY5Y cells, and how oxidative stress influences the distribution of extralysosomal A beta. Using confocal laser scanning microscopy and immunoelectron microscopy, we showed that in differentiated neuroblastoma cells cultured under normal conditions A beta (A beta(40), A beta(42), and A beta oligomers) is colocalized with both membrane-bound organelles (endoplasmic reticulum, Golgi complexes, multivesicular bodies/late endosomes, lysosomes, exocytotic vesicles and mitochondria) and non-membrane-bound cytosolic structures. Neuroblastoma cells stably transfected with A beta PP Swedish KM670/671NL double mutation showed enlarged amount of A beta colocalized with membrane compartments. Suppression of exocytosis by 5 nM tetanus toxin resulted in a significant increase of the amount of cytosolic A beta as well as A beta colocalized with exocytotic vesicles, endoplasmic reticulum, Golgi complexes, and lysosomes. Hyperoxia increased A beta localization in the endoplasmic reticulum, Golgi apparatus, mitochondria, and lysosomes, but not in the secretory vesicles. These results indicate that in SH-SY5Y neuroblastoma cells intracellular A beta is not preferentially localized to any particular organelle and, to a large extent, is secreted from the cells. Challenging cells to hyperoxia, exocytosis inhibition, or A beta overproduction increased intracellular A beta levels but did not dramatically changed its localization pattern.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy