SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Harland Mark) srt2:(2015-2019)"

Search: WFRF:(Harland Mark) > (2015-2019)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Barrett, Jennifer H., et al. (author)
  • Fine mapping of genetic susceptibility loci for melanoma reveals a mixture of single variant and multiple variant regions
  • 2015
  • In: International Journal of Cancer. - : Wiley. - 0020-7136 .- 1097-0215. ; 136:6, s. 1351-1360
  • Journal article (peer-reviewed)abstract
    • At least 17 genomic regions are established as harboring melanoma susceptibility variants, in most instances with genome-wide levels of significance and replication in independent samples. Based on genome-wide single nucleotide polymorphism (SNP) data augmented by imputation to the 1,000 Genomes reference panel, we have fine mapped these regions in over 5,000 individuals with melanoma (mainly from the GenoMEL consortium) and over 7,000 ethnically matched controls. A penalized regression approach was used to discover those SNP markers that most parsimoniously explain the observed association in each genomic region. For the majority of the regions, the signal is best explained by a single SNP, which sometimes, as in the tyrosinase region, is a known functional variant. However in five regions the explanation is more complex. At the CDKN2A locus, for example, there is strong evidence that not only multiple SNPs but also multiple genes are involved. Our results illustrate the variability in the biology underlying genome-wide susceptibility loci and make steps toward accounting for some of the missing heritability. What's new? In genome-wide association studies, researchers identify genetic variants that frequently associate with a particular disease, though the variants identified may not contribute to the molecular cause of the disease. This study took a closer look at 17 regions associated with melanoma, fine mapping the regions both in people with melanoma and in healthy controls. Though single SNPs account for the association in some regions, they found that in a few regions, several SNPs - and possibly multiple genes - contributed to the association signal. These findings illustrate the importance of not overlooking the interaction between multiple genetic markers when conducting such studies.
  •  
2.
  • Figueroa, Jonine D., et al. (author)
  • Identification of a novel susceptibility locus at 13q34 and refinement of the 20p12.2 region as a multi-signal locus associated with bladder cancer risk in individuals of European ancestry
  • 2016
  • In: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 25:6, s. 1203-1214
  • Journal article (peer-reviewed)abstract
    • Candidate gene and genome-wide association studies (GWAS) have identified 15 independent genomic regions associated with bladder cancer risk. In search for additional susceptibility variants, we followed up on four promising single-nucleotide polymorphisms (SNPs) that had not achieved genome-wide significance in 6911 cases and 11 814 controls (rs6104690, rs4510656, rs5003154 and rs4907479, P < 1 × 10−6), using additional data from existing GWAS datasets and targeted genotyping for studies that did not have GWAS data. In a combined analysis, which included data on up to 15 058 cases and 286 270 controls, two SNPs achieved genome-wide statistical significance: rs6104690 in a gene desert at 20p12.2 (P = 2.19 × 10−11) and rs4907479 within the MCF2L gene at 13q34 (P = 3.3 × 10−10). Imputation and fine-mapping analyses were performed in these two regions for a subset of 5551 bladder cancer cases and 10 242 controls. Analyses at the 13q34 region suggest a single signal marked by rs4907479. In contrast, we detected two signals in the 20p12.2 region—the first signal is marked by rs6104690, and the second signal is marked by two moderately correlated SNPs (r2 = 0.53), rs6108803 and the previously reported rs62185668. The second 20p12.2 signal is more strongly associated with the risk of muscle-invasive (T2-T4 stage) compared with non-muscle-invasive (Ta, T1 stage) bladder cancer (case–case P ≤ 0.02 for both rs62185668 and rs6108803). Functional analyses are needed to explore the biological mechanisms underlying these novel genetic associations with risk for bladder cancer.
  •  
3.
  • Thakur, Rohit, et al. (author)
  • Transcriptomic analysis reveals prognostic molecular signatures of stage I melanoma
  • 2019
  • In: Clinical Cancer Research. - 1078-0432. ; 25:24, s. 7424-7435
  • Journal article (peer-reviewed)abstract
    • Purpose: Previously identified transcriptomic signatures have been based on primary and metastatic melanomas with relatively few American Joint Committee on Cancer (AJCC) stage I tumors, given difficulties in sampling small tumors. The advent of adjuvant therapies has highlighted the need for better prognostic and predictive biomarkers, especially for AJCC stage I and stage II disease. Experimental Design: A total of 687 primary melanoma transcriptomes were generated from the Leeds Melanoma Cohort (LMC). The prognostic value of existing signatures across all the AJCC stages was tested. Unsupervised clustering was performed, and the prognostic value of the resultant signature was compared with that of sentinel node biopsy (SNB) and tested as a biomarker in three published immunotherapy datasets. Results: Previous Lund and The Cancer Genome Atlas signatures predicted outcome in the LMC dataset (P = 10¯8 to 10¯4) but showed a significant interaction with AJCC stage (P = 0.04) and did not predict outcome in stage I tumors (P = 0.3–0.7). Consensus-based classification of the LMC dataset identified six classes that predicted outcome, notably in stage I disease. LMC class was a similar indicator of prognosis when compared with SNB, and it added prognostic value to the genes reported by Gerami and colleagues. One particular LMC class consistently predicted poor outcome in patients receiving immunotherapy in two of three tested datasets. Biological characterization of this class revealed high JUN and AXL expression and evidence of epithelial-to-mesenchymal transition. Conclusions: A transcriptomic signature of primary melanoma was identified with prognostic value, including in stage I melanoma and in patients undergoing immunotherapy.
  •  
4.
  • Aoude, Lauren G, et al. (author)
  • Nonsense Mutations in the Shelterin Complex Genes ACD and TERF2IP in Familial Melanoma.
  • 2015
  • In: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:2, s. 408-408
  • Journal article (peer-reviewed)abstract
    • The shelterin complex protects chromosomal ends by regulating how the telomerase complex interacts with telomeres. Following the recent finding in familial melanoma of inactivating germline mutations in POT1, encoding a member of the shelterin complex, we searched for mutations in the other five components of the shelterin complex in melanoma families.
  •  
5.
  • Taylor, Nicholas J, et al. (author)
  • Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT
  • 2019
  • In: Journal of the American Academy of Dermatology. - : Elsevier BV. - 0190-9622 .- 1097-6787. ; 81:2, s. 386-394
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Although rare in the general population, highly penetrant germline mutations in CDKN2A are responsible for 5-40% of melanoma cases reported in melanoma-prone families. We sought to determine whether MELPREDICT was generalizable to a global series of melanoma families and whether performance improvements can be achieved.METHODS: 2,116 familial melanoma cases were ascertained by the international GenoMEL Consortium. We recapitulated the MELPREDICT model within our data (GenoMELPREDICT) to assess performance improvements by adding phenotypic risk factors and history of pancreatic cancer. We report areas under the curve (AUC) with 95% confidence intervals (CI) along with net reclassification indices (NRI) as performance metrics.RESULTS: MELPREDICT performed well (AUC=0.752; 95%CI: 0.730, 0.775), and GenoMELPREDICT performance was similar (AUC=0.748; 95% CI: 0.726, 0.771). Adding a reported history of pancreatic cancer yielded discriminatory improvement (p<0.0001) in GenoMELPREDICT (AUC=0.772; 95%CI: 0.750, 0.793; NRI=0.40). Including phenotypic risk factors did not improve performance.CONCLUSION: The MELPREDICT model functioned well in a global dataset of familial melanoma cases. Adding pancreatic cancer history improved model prediction. GenoMELPREDICT is a simple tool for predicting CDKN2A mutational status among melanoma patients from melanoma-prone families and can aid in counselling these patients towards genetic testing or cancer risk counselling.
  •  
6.
  • Taylor, Nicholas J., et al. (author)
  • Germline Variation at CDKN2A and Associations with Nevus Phenotypes among Members of Melanoma Families
  • 2017
  • In: Journal of Investigative Dermatology. - : Elsevier BV. - 0022-202X .- 1523-1747. ; 137:12, s. 2606-2612
  • Journal article (peer-reviewed)abstract
    • Germline mutations in CDKN2A are frequently identified among melanoma kindreds and are associated with increased atypical nevus counts. However, a clear relationship between pathogenic CDKN2A mutation carriage and other nevus phenotypes including counts of common acquired nevi has not yet been established. Using data from GenoMEL, we investigated the relationships between CDKN2A mutation carriage and 2-mm, 5-mm, and atypical nevus counts among blood-related members of melanoma families. Compared with individuals without a pathogenic mutation, those who carried one had an overall higher prevalence of atypical (odds ratio = 1.64; 95% confidence interval = 1.18–2.28) nevi but not 2-mm nevi (odds ratio = 1.06; 95% confidence interval = 0.92–1.21) or 5-mm nevi (odds ratio = 1.26; 95% confidence interval = 0.94–1.70). Stratification by case status showed more pronounced positive associations among non-case family members, who were nearly three times (odds ratio = 2.91; 95% confidence interval = 1.75–4.82) as likely to exhibit nevus counts at or above the median in all three nevus categories simultaneously when harboring a pathogenic mutation (vs. not harboring one). Our results support the hypothesis that unidentified nevogenic genes are co-inherited with CDKN2A and may influence carcinogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view