SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Krichbaum T.P.) srt2:(2015-2019)"

Sökning: WFRF:(Krichbaum T.P.) > (2015-2019)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. II. Array and Instrumentation
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Event Horizon Telescope (EHT) is a very long baseline interferometry (VLBI) array that comprises millimeter- and submillimeter-wavelength telescopes separated by distances comparable to the diameter of the Earth. At a nominal operating wavelength of ∼1.3 mm, EHT angular resolution (λ/D) is ∼25 μas, which is sufficient to resolve nearby supermassive black hole candidates on spatial and temporal scales that correspond to their event horizons. With this capability, the EHT scientific goals are to probe general relativistic effects in the strong-field regime and to study accretion and relativistic jet formation near the black hole boundary. In this Letter we describe the system design of the EHT, detail the technology and instrumentation that enable observations, and provide measures of its performance. Meeting the EHT science objectives has required several key developments that have facilitated the robust extension of the VLBI technique to EHT observing wavelengths and the production of instrumentation that can be deployed on a heterogeneous array of existing telescopes and facilities. To meet sensitivity requirements, high-bandwidth digital systems were developed that process data at rates of 64 gigabit s -1 , exceeding those of currently operating cm-wavelength VLBI arrays by more than an order of magnitude. Associated improvements include the development of phasing systems at array facilities, new receiver installation at several sites, and the deployment of hydrogen maser frequency standards to ensure coherent data capture across the array. These efforts led to the coordination and execution of the first Global EHT observations in 2017 April, and to event-horizon-scale imaging of the supermassive black hole candidate in M87.
  •  
2.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. I. the Shadow of the Supermassive Black Hole
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • When surrounded by a transparent emission region, black holes are expected to reveal a dark shadow caused by gravitational light bending and photon capture at the event horizon. To image and study this phenomenon, we have assembled the Event Horizon Telescope, a global very long baseline interferometry array observing at a wavelength of 1.3 mm. This allows us to reconstruct event-horizon-scale images of the supermassive black hole candidate in the center of the giant elliptical galaxy M87. We have resolved the central compact radio source as an asymmetric bright emission ring with a diameter of 42 ±3 μas, which is circular and encompasses a central depression in brightness with a flux ratio ≈10:1. The emission ring is recovered using different calibration and imaging schemes, with its diameter and width remaining stable over four different observations carried out in different days. Overall, the observed image is consistent with expectations for the shadow of a Kerr black hole as predicted by general relativity. The asymmetry in brightness in the ring can be explained in terms of relativistic beaming of the emission from a plasma rotating close to the speed of light around a black hole. We compare our images to an extensive library of ray-traced general-relativistic magnetohydrodynamic simulations of black holes and derive a central mass of M =(6.5 ±0.7) ×10 9 M o . Our radio-wave observations thus provide powerful evidence for the presence of supermassive black holes in centers of galaxies and as the central engines of active galactic nuclei. They also present a new tool to explore gravity in its most extreme limit and on a mass scale that was so far not accessible.
  •  
3.
  • Akiyama, Kazunori, et al. (författare)
  • First M87 Event Horizon Telescope Results. III. Data Processing and Calibration
  • 2019
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8213 .- 2041-8205. ; 875:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the calibration and reduction of Event Horizon Telescope (EHT) 1.3 mm radio wavelength observations of the supermassive black hole candidate at the center of the radio galaxy M87 and the quasar 3C 279, taken during the 2017 April 5-11 observing campaign. These global very long baseline interferometric observations include for the first time the highly sensitive Atacama Large Millimeter/submillimeter Array (ALMA); reaching an angular resolution of 25 μas, with characteristic sensitivity limits of ∼1 mJy on baselines to ALMA and ∼10 mJy on other baselines. The observations present challenges for existing data processing tools, arising from the rapid atmospheric phase fluctuations, wide recording bandwidth, and highly heterogeneous array. In response, we developed three independent pipelines for phase calibration and fringe detection, each tailored to the specific needs of the EHT. The final data products include calibrated total intensity amplitude and phase information. They are validated through a series of quality assurance tests that show consistency across pipelines and set limits on baseline systematic errors of 2% in amplitude and 1° in phase. The M87 data reveal the presence of two nulls in correlated flux density at ∼3.4 and ∼8.3 Gλ and temporal evolution in closure quantities, indicating intrinsic variability of compact structure on a timescale of days, or several light-crossing times for a few billion solar-mass black hole. These measurements provide the first opportunity to image horizon-scale structure in M87.
  •  
4.
  • Backes, M., et al. (författare)
  • The Africa Millimetre Telescope
  • 2016
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • It is believed that supermassive black holes are found in the centres of galaxies, including the Milky Way. Still, only indirect evidence has been gathered for the existence of these enigmatic objects that are predicted by the general theory of relativity. With the Event Horizon Telescope, a Very Long Baseline Interferometry network of millimetre-wave (radio) telescopes, it will be possible to directly image the 'shadow' of the event horizon of the black hole at the centre of the Milky Way, Sgr A∗. Although the Event Horizon Telescope utilises an extensive network of telescopes, there is a huge gap in the coverage of the u-v-plane for these observations across Africa. We discuss the benefits of adding the Africa Millimetre Telescope to the Event Horizon Telescope and present Mt. Gamsberg in Namibia as the best site for this new and first mm-wave telescope in Africa.
  •  
5.
  • Baczko, A. K., et al. (författare)
  • A highly magnetized twin-jet base pinpoints a supermassive black hole
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 593
  • Tidskriftsartikel (refereegranskat)abstract
    • Supermassive black holes (SMBH) are essential for the production of jets in radio-loud active galactic nuclei (AGN). Theoretical models based on (Blandford & Znajek 1977, MNRAS, 179, 433) extract the rotational energy from a Kerr black hole, which could be the case for NGC1052, to launch these jets. This requires magnetic fields on the order of 10(3) G to 10(4) G. We imaged the vicinity of the SMBH of the AGN NGC1052 with the Global Millimetre VLBI Array and found a bright and compact central feature that is smaller than 1.9 light days (100 Schwarzschild radii) in radius. Interpreting this as a blend of the unresolved jet bases, we derive the magnetic field at 1 Schwarzschild radius to lie between 200 G and similar to 8.3 x 10(4) G consistent with Blandford & Znajek models.
  •  
6.
  • Fuhrmann, L., et al. (författare)
  • The F-GAMMA programme : multi-frequency study of active galactic nuclei in the Fermi era Programme description and the first 2.5 years of monitoring
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 596
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. To fully exploit the scientific potential of the Fermi mission for the physics of active galactic nuclei (AGN), we initiated the F-GAMMA programme. Between 2007 and 2015 the F-GAMMA was the prime provider of complementary multi-frequency monitoring in the radio regime. Aims. We quantify the radio variability of gamma-ray blazars. We investigate its dependence on source class and examine whether the radio variability is related to the gamma-ray loudness. Finally, we assess the validity of a putative correlation between the two bands. Methods. The F-GAMMA performed monthly monitoring of a sample of about 60 sources at up to twelve radio frequencies between 2.64 and 228.39 GHz. We perform a time series analysis on the first 2.5-yr data set to obtain variability parameters. A maximum likelihood analysis is used to assess the significance of a correlation between radio and gamma-ray fluxes. Results. We present light curves and spectra (coherent within ten days) obtained with the Effelsberg 100 m and IRAM 30 m telescopes. All sources are variable across all frequency bands with amplitudes increasing with frequency up to rest frame frequencies of around 60-80 GHz as expected by shock-in-jet models. Compared to flat-spectrum radio quasars (FSRQs), BL Lacertae objects (BL Lacs) show systematically lower variability amplitudes, brightness temperatures, and Doppler factors at lower frequencies, while the difference vanishes towards higher ones. The time scales appear similar for the two classes. The distribution of spectral indices appears flatter or more inverted at higher frequencies for BL Lacs. Evolving synchrotron self-absorbed components can naturally account for the observed spectral variability. We find that the Fermi-detected sources show larger variability amplitudes, brightness temperatures, and Doppler factors than non-detected ones. Flux densities at 86.2 and 142.3 GHz correlate with 1 GeV fluxes at a significance level better than 3 sigma, implying that gamma rays are produced very close to the mm-band emission region.
  •  
7.
  • Hodgson, J., et al. (författare)
  • 5 year Global 3-mm VLBI survey of Gamma-ray active blazars
  • 2015
  • Ingår i: Proceedings of Science. - 1824-8039.
  • Konferensbidrag (refereegranskat)abstract
    • The Global mm-VLBI Array (GMVA) is a network of 14.3 mm and 7 mm capable telescopes spanning Europe and the United States, with planned extensions to Asia. The array is capable of sensitive maps with angular resolution often exceeding 50 μas. Using the GMVA, a large sample of prominent γ-ray blazars have been observed approximately 6 monthly from later 2008 until now. Combining 3 mm maps from the GMVA with near-in-time 7 mm maps from the VLBA-BU-BLAZAR program and 2 cm maps from the MOJAVE program, we determine the sub-pc morphology and high frequency spectral structure of γ-ray blazars. The magnetic field strengthcan be estimated at different locations along the jet under the assumption of equipartition between magnetic field and relativistic particle energies. Making assumptions on the jet magnetic field configuration (e.g. poloidal or toroidal), we can estimate the separation of the mm-wave “core” and the jet base, and estimate the strength of the magnetic field there. The results of this analysisshow that on average, the magnetic field strength decreases with a power-law (B proportional to r^(−n), with n = 0.3 +/- 0.2). This suggests that on average, the mm-wave “core” is ∼ 1 − 3 pc downstream of the deprojected jet apex and that the magnetic field strength is of the order B apex ∼ 5 − 20 kG, broadly consistent with the predictions of magnetic jet launching (e.g. via magnetically arrested disks, MAD).
  •  
8.
  • Hodgson, J.A., et al. (författare)
  • Location of γ-ray emission and magnetic field strengths in OJ 287
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 597, s. 80-
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The γ-ray BL Lac object OJ 287 is known to exhibit inner-parsec "jet-wobbling", high degrees of variability at all wavelengths and quasi-stationary features, including an apparent (≈100°) position-angle change in projection on the sky plane. Aims. Sub-50 micro-arcsecond resolution 86 GHz observations with the global mm-VLBI array (GMVA) supplement ongoing multifrequency VLBI blazar monitoring at lower frequencies. Using these maps, together with cm/mm total intensity and γ-ray observations from Fermi-LAT from 2008..2014, we aim to determine the location of γ-ray emission and to explain the inner-mas structural changes. Methods. Observations with the GMVA oer approximately double the angular resolution compared with 43 GHz VLBA observations and enable us to observe above the synchrotron self-absorption peak frequency. Fermi-LAT γ-ray data were reduced and analysed. The jet was spectrally decomposed at multiple locations along the jet. From this, we could derive estimates of the magnetic field using equipartition and synchrotron self-absorption arguments. How the field decreases down the jet provided an estimate of the distance to the jet apex and an estimate of the magnetic field strength at the jet apex and in the broad line region. Combined with accurate kinematics, we attempt to locate the site of γ-ray activity, radio flares, and spectral changes. Results. Strong γ-ray flares appeared to originate from either the so-called core region, a downstream stationary feature, or both, with γ-ray activity significantly correlated with radio flaring in the downstream quasi-stationary feature. Magnetic field estimates were determined at multiple locations along the jet, with the magnetic field found to be ≥1.6G in the core and ≤0.4G in the downstream quasi-stationary feature.We therefore found upper limits on the location of the VLBI core as ≤6.0 pc from the jet apex and determined an upper limit on the magnetic field near the jet base of the order of thousands of Gauss.
  •  
9.
  • Issaoun, S., et al. (författare)
  • The Size, Shape, and Scattering of Sagittarius A∗ at 86 GHz: First VLBI with ALMA
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 871:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The Galactic center supermassive black hole Sagittarius A∗ (Sgr A∗) is one of the most promising targets to study the dynamics of black hole accretion and outflow via direct imaging with very long baseline interferometry (VLBI). At 3.5 mm (86 GHz), the emission from Sgr A∗ is resolvable with the Global Millimeter VLBI Array (GMVA). We present the first observations of Sgr A∗ with the phased Atacama Large Millimeter/submillimeter Array (ALMA) joining the GMVA. Our observations achieve an angular resolution of ∼87 μas, improving upon previous experiments by a factor of two. We reconstruct a first image of the unscattered source structure of Sgr A∗ at 3.5 mm, mitigating the effects of interstellar scattering. The unscattered source has a major-axis size of 120 ±34 μas (12 ±3.4 Schwarzschild radii) and a symmetrical morphology (axial ratio of ), which is further supported by closure phases consistent with zero within 3σ. We show that multiple disk-dominated models of Sgr A∗ match our observational constraints, while the two jet-dominated models considered are constrained to small viewing angles. Our long-baseline detections to ALMA also provide new constraints on the scattering of Sgr A∗, and we show that refractive scattering effects are likely to be weak for images of Sgr A∗ at 1.3 mm with the Event Horizon Telescope. Our results provide the most stringent constraints to date for the intrinsic morphology and refractive scattering of Sgr A∗, demonstrating the exceptional contribution of ALMA to millimeter VLBI.
  •  
10.
  • Kim, J. Y., et al. (författare)
  • Spatially resolved origin of millimeter-wave linear polarization in the nuclear region of 3C 84
  • 2019
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 622
  • Tidskriftsartikel (refereegranskat)abstract
    • We report results from a deep polarization imaging of the nearby radio galaxy 3C 84 (NGC 1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86 GHz at an ultrahigh angular resolution of 50 μas (corresponding to ∼200Rs). We also add complementary multiwavelength data from the Very Long Baseline Array (VLBA; 15 and 43 GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0 and 343.5 GHz). At 86 GHz, we measured a fractional linear polarization of ∼2% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15 GHz (∼0.3-0.7% and <0.1%, respectively). This suggests an increasing linear polarization degree toward shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of ∼10 5-6 rad m 2 in the core at 43 GHz. Moreover, the VLBA 43 GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy