SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lahti J.) srt2:(2020)"

Sökning: WFRF:(Lahti J.) > (2020)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Elg, Alf Peter, et al. (författare)
  • Research project EMPIR 19ENG02 future energy
  • 2020
  • Ingår i: VDE High Voltage Technology 2020. - : VDE Verlag GmbH. - 9783800753550 ; , s. 252-257
  • Konferensbidrag (refereegranskat)abstract
    • Society's increasing demand for electrical energy, along with the increased integration of remote renewable generation has driven transmission levels to ever higher voltages in order to maintain (or improve) grid efficiency. Consequently, high voltage testing and monitoring beyond voltage levels covered by presently available metrology infrastructures are needed to secure availability and quality of supply. Calibration services for Ultra-High Voltage Direct Current (UHVDC) presently are only available up to 1000 kV. There is a need to extend the DC calibration capabilities for voltage instrument transformers up to 1200 kV and for factory component testing capabilities up to 2000 kV. Also, methods for linear extension of lightning impulse calibration, for dielectric testing of UHV grid equipment, urgently need revision. Recent research has raised questions regarding the validity of the current linearity extension methods for voltages beyond 2500 kV. Furthermore, new methods for calibration are needed for the 0.2 class HVAC voltage instrument transformers for system voltages up to 1200 kV. The current methods used for determination of the voltage dependence are very time consuming, raising the need for methods allowing faster assessment. Finally, with new HVDC transmission grids and associated components, novel methods are needed for detection, classification and localisation of partial discharge (PD) under DC stress. The industry needs methods for reliable monitoring of critical components such as cables, for both HVAC and HVDC, and gas insulated substations (GIS), and techniques for addressing new challenges introduced by HVDC technologies, such as the ability to distinguish PD signals from switching transients in converters and other sources of noise.
  •  
3.
  •  
4.
  • Kilpua, Emilia K. J., et al. (författare)
  • Magnetic field fluctuation properties of coronal mass ejection-driven sheath regions in the near-Earth solar wind
  • 2020
  • Ingår i: Annales Geophysicae. - : COPERNICUS GESELLSCHAFT MBH. - 0992-7689 .- 1432-0576. ; 38:5, s. 999-1017
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we investigate magnetic field fluctuations in three coronal mass ejection (CME)-driven sheath regions at 1 AU, with their speeds ranging from slow to fast. The data set we use consists primarily of high-resolution (0.092 s) magnetic field measurements from the Wind spacecraft. We analyse magnetic field fluctuation amplitudes, compressibility, and spectral properties of fluctuations. We also analyse intermittency using various approaches; we apply the partial variance of increments (PVIs) method, investigate probability distribution functions of fluctuations, including their skewness and kurtosis, and perform a structure function analysis. Our analysis is conducted separately for three different subregions within the sheath and one in the solar wind ahead of it, each 1 h in duration. We find that, for all cases, the transition from the solar wind ahead to the sheath generates new fluctuations, and the intermittency and compressibility increase, while the region closest to the ejecta leading edge resembled the solar wind ahead. The spectral indices exhibit large variability in different parts of the sheath but are typically steeper than Kolmogorov's in the inertial range. The structure function analysis produced generally the best fit with the extended p model, suggesting that turbulence is not fully developed in CME sheaths near Earth's orbit. Both Kraichnan-Iroshinikov and Kolmogorov's forms yielded high intermittency but different spectral slopes, thus questioning how well these models can describe turbulence in sheaths. At the smallest timescales investigated, the spectral indices indicate shallower than expected slopes in the dissipation range (between 2 and 2 :5), suggesting that, in CME-driven sheaths at 1 AU, the energy cascade from larger to smaller scales could still be ongoing through the ion scale. Many turbulent properties of sheaths (e.g. spectral indices and compressibility) resemble those of the slow wind rather than the fast. They are also partly similar to properties reported in the terrestrial magnetosheath, in particular regarding their intermittency, compressibility, and absence of Kolmogorov's type turbulence. Our study also reveals that turbulent properties can vary considerably within the sheath. This was particularly the case for the fast sheath behind the strong and quasi-parallel shock, including a small, coherent structure embedded close to its midpoint. Our results support the view of the complex formation of the sheath and different physical mechanisms playing a role in generating fluctuations in them.
  •  
5.
  • Merid, Simon Kebede, et al. (författare)
  • Epigenome-wide meta-analysis of blood DNA methylation in newborns and children identifies numerous loci related to gestational age
  • 2020
  • Ingår i: Genome Medicine. - Stockholm : Karolinska Institutet, Dept of Clinical Science and Education, Södersjukhuset. - 1756-994X.
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Preterm birth and shorter duration of pregnancy are associated with increased morbidity in neonatal and later life. As the epigenome is known to have an important role during fetal development, we investigated associations between gestational age and blood DNA methylation in children. Methods: We performed meta-analysis of Illumina's HumanMethylation450-array associations between gestational age and cord blood DNA methylation in 3648 newborns from 17 cohorts without common pregnancy complications, induced delivery or caesarean section. We also explored associations of gestational age with DNA methylation measured at 4-18 years in additional pediatric cohorts. Follow-up analyses of DNA methylation and gene expression correlations were performed in cord blood. DNA methylation profiles were also explored in tissues relevant for gestational age health effects: fetal brain and lung. Results: We identified 8899 CpGs in cord blood that were associated with gestational age (range 27-42 weeks), at Bonferroni significance, P < 1.06 × 10- 7, of which 3343 were novel. These were annotated to 4966 genes. After restricting findings to at least three significant adjacent CpGs, we identified 1276 CpGs annotated to 325 genes. Results were generally consistent when analyses were restricted to term births. Cord blood findings tended not to persist into childhood and adolescence. Pathway analyses identified enrichment for biological processes critical to embryonic development. Follow-up of identified genes showed correlations between gestational age and DNA methylation levels in fetal brain and lung tissue, as well as correlation with expression levels. Conclusions: We identified numerous CpGs differentially methylated in relation to gestational age at birth that appear to reflect fetal developmental processes across tissues. These findings may contribute to understanding mechanisms linking gestational age to health effects.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy