SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lahti Jari) srt2:(2019)"

Sökning: WFRF:(Lahti Jari) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Haljas, Kadri, et al. (författare)
  • The associations of daylight and melatonin receptor 1B gene rs10830963 variant with glycemic traits : the prospective PPP-Botnia study
  • 2019
  • Ingår i: Annals of Medicine. - : Informa UK Limited. - 0785-3890 .- 1365-2060. ; 51:1, s. 58-67
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Seasonal variation in glucose metabolism might be driven by changes in daylight. Melatonin entrains circadian regulation and is directly associated with daylight. The relationship between melatonin receptor 1B gene variants with glycemic traits and type 2 diabetes is well established. We studied if daylight length was associated with glycemic traits and if it modified the relationship between melatonin receptor 1B gene rs10830963 variant and glycemic traits. Materials: A population-based sample of 3422 18–78-year-old individuals without diabetes underwent an oral glucose tolerance test twice, an average 6.8 years (SD = 0.9) apart and were genotyped for rs10830963. Daylight data was obtained from the Finnish Meteorological Institute. Results: Cross-sectionally, more daylight was associated with lower fasting glucose, but worse insulin sensitivity and secretion at follow-up. Longitudinally, individuals studied on lighter days at follow-up than at baseline showed higher glucose values during the oral glucose tolerance test and lower Corrected Insulin Response at follow-up. GG genotype carriers in the rs10830963 became more insulin resistant during follow-up if daylight length was shorter at follow-up than at baseline. Conclusions: Our study shows that individual glycemic profiles may vary according to daylight, MTNR1B genotype and their interaction. Future studies may consider taking daylight length into account.Key messages In Western Finland, the amount daylight follows an extensive annual variation ranging from 4 h 44 min to 20 h 17 min, making it ideal to study the associations between daylight and glycemic traits. Moreover, this allows researchers to explore if the relationship between the melatonin receptor 1B gene rs10830963 variant and glycemic traits is modified by the amount of daylight both cross-sectionally and longitudinally. This study shows that individuals, who participated in the study on lighter days at the follow-up than at the baseline, displayed to a greater extent worse glycemic profiles across the follow-up. Novel findings from the current study show that in the longitudinal analyses, each addition of the minor G allele of the melatonin receptor 1B gene rs10830963 was associated with worsening of fasting glucose values and insulin secretion across the 6.8-year follow-up. Importantly, this study shows that in those with the rs10830963 GG genotype, insulin sensitivity deteriorated the most significantly across the 6.8-year follow-up if the daylight length on the oral glucose tolerance testing date at the follow-up was shorter than at the baseline. Taken together, the current findings suggest that the amount of daylight may affect glycemic traits, especially fasting glucose and insulin secretion even though the effect size is small. The association can very according to the rs10830963 risk variant. Further research is needed to elucidate the mechanisms behind these associations.
  •  
2.
  • Middeldorp, Christel M., et al. (författare)
  • The Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia : design, results and future prospects
  • 2019
  • Ingår i: European Journal of Epidemiology. - : Springer Science and Business Media LLC. - 0393-2990 .- 1573-7284. ; 34:3, s. 279-300
  • Tidskriftsartikel (refereegranskat)abstract
    • The impact of many unfavorable childhood traits or diseases, such as low birth weight and mental disorders, is not limited to childhood and adolescence, as they are also associated with poor outcomes in adulthood, such as cardiovascular disease. Insight into the genetic etiology of childhood and adolescent traits and disorders may therefore provide new perspectives, not only on how to improve wellbeing during childhood, but also how to prevent later adverse outcomes. To achieve the sample sizes required for genetic research, the Early Growth Genetics (EGG) and EArly Genetics and Lifecourse Epidemiology (EAGLE) consortia were established. The majority of the participating cohorts are longitudinal population-based samples, but other cohorts with data on early childhood phenotypes are also involved. Cohorts often have a broad focus and collect(ed) data on various somatic and psychiatric traits as well as environmental factors. Genetic variants have been successfully identified for multiple traits, for example, birth weight, atopic dermatitis, childhood BMI, allergic sensitization, and pubertal growth. Furthermore, the results have shown that genetic factors also partly underlie the association with adult traits. As sample sizes are still increasing, it is expected that future analyses will identify additional variants. This, in combination with the development of innovative statistical methods, will provide detailed insight on the mechanisms underlying the transition from childhood to adult disorders. Both consortia welcome new collaborations. Policies and contact details are available from the corresponding authors of this manuscript and/or the consortium websites.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy