SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ljung Lennart 1946 ) srt2:(2015-2018)"

Sökning: WFRF:(Ljung Lennart 1946 ) > (2015-2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jung, Ylva, 1984- (författare)
  • Inverse system identification with applications in predistortion
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Models are commonly used to simulate events and processes, and can be constructed from measured data using system identification. The common way is to model the system from input to output, but in this thesis we want to obtain the inverse of the system.Power amplifiers (PAs) used in communication devices can be nonlinear, and this causes interference in adjacent transmitting channels. A prefilter, called predistorter, can be used to invert the effects of the PA, such that the combination of predistorter and PA reconstructs an amplified version of the input signal. In this thesis, the predistortion problem has been investigated for outphasing power amplifiers, where the input signal is decomposed into two branches that are amplified separately by highly efficient nonlinear amplifiers and then recombined. We have formulated a model structure describing the imperfections in an outphasing \abbrPA and the matching ideal predistorter. The predistorter can be estimated from measured data in different ways. Here, the initially nonconvex optimization problem has been developed into a convex problem. The predistorters have been evaluated in measurements.The goal with the inverse models in this thesis is to use them in cascade with the systems to reconstruct the original input. It is shown that the problems of identifying a model of a preinverse and a postinverse are fundamentally different. It turns out that the true inverse is not necessarily the best one when noise is present, and that other models and structures can lead to better inversion results.To construct a predistorter (for a PA, for example), a model of the inverse is used, and different methods can be used for the estimation. One common method is to estimate a postinverse, and then using it as a preinverse, making it straightforward to try out different model structures. Another is to construct a model of the system and then use it to estimate a preinverse in a second step. This method identifies the inverse in the setup it will be used, but leads to a complicated optimization problem. A third option is to model the forward system and then invert it. This method can be understood using standard identification theory in contrast to the ones above, but the model is tuned for the forward system, not the inverse. Models obtained using the various methods capture different properties of the system, and a more detailed analysis of the methods is presented for linear time-invariant systems and linear approximations of block-oriented systems. The theory is also illustrated in examples.When a preinverse is used, the input to the system will be changed, and typically the input data will be different than the original input. This is why the estimation of preinverses is more complicated than for postinverses, and one set of experimental data is not enough. Here, we have shown that identifying a preinverse in series with the system in repeated experiments can improve the inversion performance.
  •  
2.
  • Mu, Biqiang, 1986-, et al. (författare)
  • On asymptotic properties of hyperparameter estimators for kernel-based regularization methods
  • 2018
  • Ingår i: Automatica. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0005-1098 .- 1873-2836. ; 94, s. 381-395
  • Tidskriftsartikel (refereegranskat)abstract
    • The kernel-based regularization method has two core issues: kernel design and hyperparameter estimation. In this paper, we focus on the second issue and study the properties of several hyperparameter estimators including the empirical Bayes (EB) estimator, two Steins unbiased risk estimators (SURE) (one related to impulse response reconstruction and the other related to output prediction) and their corresponding Oracle counterparts, with an emphasis on the asymptotic properties of these hyperparameter estimators. To this goal, we first derive and then rewrite the first order optimality conditions of these hyperparameter estimators, leading to several insights on these hyperparameter estimators. Then we show that as the number of data goes to infinity, the two SUREs converge to the best hyperparameter minimizing the corresponding mean square error, respectively, while the more widely used EB estimator converges to another best hyperparameter minimizing the expectation of the EB estimation criterion. This indicates that the two SUREs are asymptotically optimal in the corresponding MSE senses but the EB estimator is not. Surprisingly, the convergence rate of two SUREs is slower than that of the EB estimator, and moreover, unlike the two SUREs, the EB estimator is independent of the convergence rate of Phi(T)Phi/N to its limit, where Phi is the regression matrix and N is the number of data. A Monte Carlo simulation is provided to demonstrate the theoretical results. (C) 2018 Elsevier Ltd. All rights reserved.
  •  
3.
  • Pan, Wei, et al. (författare)
  • Identification of Nonlinear State-Space Systems from Heterogeneous Datasets
  • 2018
  • Ingår i: IEEE Transactions on Control of Network Systems. - : IEEE. - 2325-5870. ; 5:2, s. 737-747
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper proposes a new method to identify nonlinear state-space systems from heterogeneous datasets. The method is described in the context of identifying biochemical/gene networks (i.e., identifying both reaction dynamics and kinetic parameters) from experimental data. Simultaneous integration of various datasets has the potential to yield better performance for system identification. Data collected experimentally typically vary depending on the specific experimental setup and conditions. Typically, heterogeneous data are obtained experimentally through 1) replicate measurements from the same biological system or 2) application of different experimental conditions such as changes/perturbations in biological inductions, temperature, gene knock-out, gene over-expression, etc. We formulate here the identification problem using a Bayesian learning framework that makes use of “sparse group” priors to allow inference of the sparsest model that can explain the whole set of observed heterogeneous data. To enable scale up to large number of features, the resulting nonconvex optimization problem is relaxed to a reweighted Group Lasso problem using a convex-concave procedure. As an illustrative example of the effectiveness of our method, we use it to identify a genetic oscillator (generalized eight species repressilator). Through this example we show that our algorithm outperforms Group Lasso when the number of experiments is increased, even when each single time-series dataset is short. We additionally assess the robustness of our algorithm against noise by varying the intensity of process noise and measurement noise.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy