SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ljunggren Elin) srt2:(2015-2018)"

Sökning: WFRF:(Ljunggren Elin) > (2015-2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kindstedt, Elin, 1991- (författare)
  • Novel Insights into Inflammatory Disturbed Bone Remodelling
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Bone is a dynamic tissue that is continuously remodelled, a process that requires equal amounts of osteoclastic bone resorption and osteoblastic bone formation. Inflammation may disturb the equilibrium and result in local and/or systemic bone loss. Negative bone mass balance occurs in several chronic inflammatory diseases, e.g. periodontitis and rheumatoid arthritis (RA). The aetiology of periodontitis is infectious, while RA is an autoimmune disease. Despite aetiological differences, an association between the two diseases has been established but it is not known if they are causally related. Periodontitis may develop when the inflammatory process, initially restricted to the gingiva (gingivitis), further invades the periodontium and causes bone resorption. The cellular and molecular mechanisms underlying the transition from gingivitis to periodontitis are not fully elucidated. Osteoclast formation is dependent on receptor activator of nuclear factor kappa B ligand (RANKL), but how osteoclast precursors are recruited to the jawbone is poorly understood. A family of cytokines named chemokines has been reported to possess such properties and increasing evidence points towards their involvement in the pathogenesis of chronic inflammatory diseases.The overall aim of this thesis was to gain extended knowledge about the role of chemokines and a newly discovered family of leukocytes named innate lymphoid cells (ILCs) in periodontitis and concomitant inflammatory disturbed bone remodelling. Furthermore, the aim was also to study the association between periodontitis and RA.We identified increased serum levels of monocyte chemoattractant protein (MCP)-1 and CCL11 in individuals with periodontitis. Moreover, a robust correlation between the two chemokines and periodontitis was detected in a weighted analysis of inflammatory markers, subject characteristics and periodontitis parameters. We detected higher MCP-1 levels in periodontitis tissue compared to non-inflamed. Furthermore we demonstrated that human gingival fibroblasts express MCP-1 and CCL11 in response to pro-inflammatory cytokines through NF-κB signalling. Using an inflammatory bone lesion model and primary cell cultures, we discovered that osteoblasts express CCL11 in vivo and in vitro and that the expression increased under inflammatory conditions. Osteoclasts did not express CCL11, but its high affinity receptor CCR3 was upregulated during osteoclast differentiation and found to co-localise with CCL11 on the surface of osteoclasts. Exogenous CCL11 was internalised in osteoclasts, stimulated the migration of osteoclast precursors and increased bone resorption in vitro.To analyse if periodontitis precedes RA we analysed marginal jawbone loss in dental radiographs taken in pre-symptomatic RA cases and matched controls. The prevalence of jawbone loss was higher among cases, and the amount of jawbone loss correlated with plasma levels of RANKL.In the search of the newly discovered ILCs, we performed flow cytometry analyses on gingivitis and periodontitis tissue samples. We detected twice as many ILCs in periodontitis as in gingivitis. In addition we found RANKL expression on ILC1s (an ILC subset).In conclusion, we demonstrated that CCL11 is systemically and locally increased in periodontitis and that the CCL11/CCR3 axis may be activated in inflammatory disturbed bone remodelling. We also found that marginal jawbone loss correlated with plasma levels of RANKL and preceded clinical onset of symptoms of RA. Furthermore, we demonstrated that ILCs are present in periodontitis and represent a previously unknown source of RANKL. 
  •  
2.
  • Westerberg, Per-Anton, 1967-, et al. (författare)
  • High doses of cholecalciferol alleviate the progression of hyperparathyroidism in patients with CKD Stages 3-4 : results of a 12-week double-blind, randomized, controlled study
  • 2018
  • Ingår i: Nephrology, Dialysis and Transplantation. - : Oxford University Press (OUP). - 0931-0509 .- 1460-2385. ; 33:3, s. 466-471
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Calcidiol insufficiency may accelerate the development of secondary hyperparathyroidism (SHPT). We tested the effect of a substantial increase in calcidiol on mineral metabolism in patients with chronic kidney disease (CKD).Methods: Ninety-five patients with CKD Stages 3-4, parathyroid hormone (PTH) above 6.8 pmol/L and calcidiol below 75 nmol/L were randomized to receive either cholecalciferol 8000 IU/day or placebo for 12 weeks. The primary endpoint was difference in the mean change in iPTH after 12 weeks. The proportion of participants having a 30% reduction in PTH and the effect on hand grip strength, fatigue and different biochemical variables were also investigated.Results: Baseline calcidiol was 57.5 ± 22 and 56.8 ± 22 nmol/L in the cholecalciferol and placebo groups, respectively. The corresponding concentrations of PTH were 10.9 ± 5 and 13.1 ± 9 pmol/L. Calcidiol increased to 162 ± 49 nmol/L in patients receiving cholecalciferol, and PTH levels remained constant at 10.5 ± 5 pmol/L. In the placebo group, calcidiol remained stable and PTH increased to 15.2 ± 11 pmol/L. The mean change in PTH differed significantly between the two groups (P < 0.01). The proportion of subjects reaching a 30% decrease in PTH did not differ. No effect on grip strength, fatigue, phosphate or fibroblast growth factor 23 was observed. Cholecalciferol treatment resulted in stable calcium concentrations and a substantial increase in calcitriol.Conclusion: Treatment with high daily doses of cholecalciferol in patients with CKD Stages 3-4 halts the progression of SHPT and does not cause hypercalcaemia or other side effects.
  •  
3.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy