SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lovestone S) srt2:(2020)"

Sökning: WFRF:(Lovestone S) > (2020)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tijms, B. M., et al. (författare)
  • Pathophysiological subtypes of Alzheimer's disease based on cerebrospinal fluid proteomics
  • 2020
  • Ingår i: Brain. - : Oxford University Press (OUP). - 0006-8950 .- 1460-2156. ; 143, s. 3776-3792
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n=425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n=127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P>0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P<0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P=0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P=0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy.
  •  
3.
  • Konijnenberg, E., et al. (författare)
  • APOE ϵ4 genotype-dependent cerebrospinal fluid proteomic signatures in Alzheimer's disease
  • 2020
  • Ingår i: Alzheimer's Research and Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Aggregation of amyloid β into plaques in the brain is one of the earliest pathological events in Alzheimer's disease (AD). The exact pathophysiology leading to dementia is still uncertain, but the apolipoprotein E (APOE) ϵ4 genotype plays a major role. We aimed to identify the molecular pathways associated with amyloid β aggregation using cerebrospinal fluid (CSF) proteomics and to study the potential modifying effects of APOE ϵ4 genotype. Methods: We tested 243 proteins and protein fragments in CSF comparing 193 subjects with AD across the cognitive spectrum (65% APOE ϵ4 carriers, average age 75 ± 7 years) against 60 controls with normal CSF amyloid β, normal cognition, and no APOE ϵ4 allele (average age 75 ± 6 years). Results: One hundred twenty-nine proteins (53%) were associated with aggregated amyloid β. APOE ϵ4 carriers with AD showed altered concentrations of proteins involved in the complement pathway and glycolysis when cognition was normal and lower concentrations of proteins involved in synapse structure and function when cognitive impairment was moderately severe. APOE ϵ4 non-carriers with AD showed lower expression of proteins involved in synapse structure and function when cognition was normal and lower concentrations of proteins that were associated with complement and other inflammatory processes when cognitive impairment was mild. Repeating analyses for 114 proteins that were available in an independent EMIF-AD MBD dataset (n = 275) showed that 80% of the proteins showed group differences in a similar direction, but overall, 28% effects reached statistical significance (ranging between 6 and 87% depending on the disease stage and genotype), suggesting variable reproducibility. Conclusions: These results imply that AD pathophysiology depends on APOE genotype and that treatment for AD may need to be tailored according to APOE genotype and severity of the cognitive impairment. © 2020 The Author(s).
  •  
4.
  • Kurbatova, N., et al. (författare)
  • Urinary metabolic phenotyping for Alzheimer's disease
  • 2020
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer's Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer's Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer's Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer's Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer's pathology in previous studies.
  •  
5.
  • Lovestone, S., et al. (författare)
  • The European medical information framework: A novel ecosystem for sharing healthcare data across Europe
  • 2020
  • Ingår i: Learning Health Systems. - : Wiley. - 2379-6146. ; 4:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction The European medical information framework (EMIF) was an Innovative Medicines Initiative project jointly supported by the European Union and the European Federation of Pharmaceutical Industries and Associations, that generated a common technology and governance framework to identify, assess and (re)use healthcare data, to facilitate real-world data research. The objectives of EMIF included providing a unified platform to support a wide range of studies within two verification programmes-Alzheimer's disease (EMIF-AD), and metabolic consequences of obesity (EMIF-MET). Methods The EMIF platform was built around two main data-types: electronic health record data and research cohort data, and the platform architecture composed of a set of tools designed to enable data discovery and characterisation. This included the EMIF catalogue, which allowed users to find relevant data sources, including the data-types collected. Data harmonisation via a common data model were central to the project especially for population data sources. EMIF also developed an ethical code of practice to ensure data protection, patient confidentiality and compliance with the European Data Protection Directive, and GDPR. Results Currently 18 population-based disease agnostic and 60 cohort-based Alzheimer's data partners from across 14 countries are contained within the catalogue, and this will continue to expand. The work conducted in EMIF-AD and EMIF-MET includes standardizing cohorts, summarising baseline characteristics of patients, developing diagnostic algorithms, epidemiological studies, identifying and validating novel biomarkers and selecting potential patient samples for pharmacological intervention. Conclusions EMIF was designed to provide a sustainable model as demonstrated by the sustainability plans for EMIF-AD. Although network-wide studies using EMIF were not conducted during this project to evaluate its sustainability, learning from EMIF will be used in the follow-on IMI-2 project, European Health Data and Evidence Network (EHDEN). Furthermore, EMIF has facilitated collaborations between partners and continues to promote a wider adoption of principles, technology and architecture through some of its continued work.
  •  
6.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy