SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Lunetta Kathryn L.) srt2:(2015-2019);srt2:(2017)"

Sökning: WFRF:(Lunetta Kathryn L.) > (2015-2019) > (2017)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ben-Avraham, Dan, et al. (författare)
  • The complex genetics of gait speed : Genome-wide meta-analysis approach
  • 2017
  • Ingår i: Aging. - : Impact Journals, LLC. - 1945-4589. ; 9:1, s. 209-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that the basis for variation in late-life mobility is attributable, in part, to genetic factors, which may become increasingly important with age. Our objective was to systematically assess the contribution of genetic variation to gait speed in older individuals. We conducted a meta-analysis of gait speed GWASs in 31,478 older adults from 17 cohorts of the CHARGE consortium, and validated our results in 2,588 older adults from 4 independent studies. We followed our initial discoveries with network and eQTL analysis of candidate signals in tissues. The meta-analysis resulted in a list of 536 suggestive genome wide significant SNPs in or near 69 genes. Further interrogation with Pathway Analysis placed gait speed as a polygenic complex trait in five major networks. Subsequent eQTL analysis revealed several SNPs significantly associated with the expression of PRSS16, WDSUB1 and PTPRT, which in addition to the meta-analysis and pathway suggested that genetic effects on gait speed may occur through synaptic function and neuronal development pathways. No genome-wide significant signals for gait speed were identified from this moderately large sample of older adults, suggesting that more refined physical function phenotypes will be needed to identify the genetic basis of gait speed in aging.
  •  
3.
  • Lubitz, Steven A, et al. (författare)
  • Genetic Risk Prediction of Atrial Fibrillation
  • 2017
  • Ingår i: Circulation. - 0009-7322. ; 135:14, s. 1311-1320
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND—: Atrial fibrillation (AF) has a substantial genetic basis. Identification of individuals at greatest AF risk could minimize the incidence of cardioembolic stroke. METHODS—: To determine whether genetic data can stratify risk for development of AF, we examined associations between AF genetic risk scores and incident AF in five prospective studies comprising 18,919 individuals of European ancestry. We examined associations between AF genetic risk scores and ischemic stroke in a separate study of 509 ischemic stroke cases (202 cardioembolic [40%]) and 3,028 referents. Scores were based on 11 to 719 common variants (≥5%) associated with AF at P-values ranging from <1x10 to <1x10 in a prior independent genetic association study. RESULTS—: Incident AF occurred in 1,032 (5.5%) individuals. AF genetic risk scores were associated with new-onset AF after adjusting for clinical risk factors. The pooled hazard ratio for incident AF for the highest versus lowest quartile of genetic risk scores ranged from 1.28 (719 variants; 95%CI, 1.13-1.46; P=1.5x10) to 1.67 (25 variants; 95%CI, 1.47-1.90; P=9.3x10). Discrimination of combined clinical and genetic risk scores varied across studies and scores (maximum C statistic, 0.629-0.811; maximum ΔC statistic from clinical score alone, 0.009-0.017). AF genetic risk was associated with stroke in age- and sex-adjusted models. For example, individuals in the highest versus lowest quartile of a 127-variant score had a 2.49-fold increased odds of cardioembolic stroke (95%CI, 1.39-4.58; P=2.7x10). The effect persisted after excluding individuals (n=70) with known AF (odds ratio, 2.25; 95%CI, 1.20-4.40; P=0.01). CONCLUSIONS—: Comprehensive AF genetic risk scores were associated with incident AF beyond associations for clinical AF risk factors, though offered small improvements in discrimination. AF genetic risk was also associated with cardioembolic stroke in age- and sex-adjusted analyses. Efforts are warranted to determine whether AF genetic risk may improve identification of subclinical AF or help distinguish between stroke mechanisms.
  •  
4.
  • Weng, Lu Chen, et al. (författare)
  • Genetic Interactions with Age, Sex, Body Mass Index, and Hypertension in Relation to Atrial Fibrillation : The AFGen Consortium
  • 2017
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • It is unclear whether genetic markers interact with risk factors to influence atrial fibrillation (AF) risk. We performed genome-wide interaction analyses between genetic variants and age, sex, hypertension, and body mass index in the AFGen Consortium. Study-specific results were combined using meta-analysis (88,383 individuals of European descent, including 7,292 with AF). Variants with nominal interaction associations in the discovery analysis were tested for association in four independent studies (131,441 individuals, including 5,722 with AF). In the discovery analysis, the AF risk associated with the minor rs6817105 allele (at the PITX2 locus) was greater among subjects ≤ 65 years of age than among those > 65 years (interaction p-value = 4.0 × 10-5). The interaction p-value exceeded genome-wide significance in combined discovery and replication analyses (interaction p-value = 1.7 × 10-8). We observed one genome-wide significant interaction with body mass index and several suggestive interactions with age, sex, and body mass index in the discovery analysis. However, none was replicated in the independent sample. Our findings suggest that the pathogenesis of AF may differ according to age in individuals of European descent, but we did not observe evidence of statistically significant genetic interactions with sex, body mass index, or hypertension on AF risk.
  •  
5.
  • Weng, Lu Chen, et al. (författare)
  • Heritability of Atrial Fibrillation
  • 2017
  • Ingår i: Circulation: Cardiovascular Genetics. - 1942-325X. ; 10:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Background - Previous reports have implicated multiple genetic loci associated with AF, but the contributions of genome-wide variation to AF susceptibility have not been quantified. Methods and Results - We assessed the contribution of genome-wide single-nucleotide polymorphism variation to AF risk (single-nucleotide polymorphism heritability, h2 g) using data from 120 286 unrelated individuals of European ancestry (2987 with AF) in the population-based UK Biobank. We ascertained AF based on self-report, medical record billing codes, procedure codes, and death records. We estimated h2 g using a variance components method with variants having a minor allele frequency ≥1%. We evaluated h2 g in age, sex, and genomic strata of interest. The h2 g for AF was 22.1% (95% confidence interval, 15.6%-28.5%) and was similar for early- versus older-onset AF (≤65 versus >65 years of age), as well as for men and women. The proportion of AF variance explained by genetic variation was mainly accounted for by common (minor allele frequency, ≥5%) variants (20.4%; 95% confidence interval, 15.1%-25.6%). Only 6.4% (95% confidence interval, 5.1%-7.7%) of AF variance was attributed to variation within known AF susceptibility, cardiac arrhythmia, and cardiomyopathy gene regions. Conclusions - Genetic variation contributes substantially to AF risk. The risk for AF conferred by genomic variation is similar to that observed for several other cardiovascular diseases. Established AF loci only explain a moderate proportion of disease risk, suggesting that further genetic discovery, with an emphasis on common variation, is warranted to understand the causal genetic basis of AF.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy