SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Mansouri Larry) srt2:(2020)"

Sökning: WFRF:(Mansouri Larry) > (2020)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brieghel, Christian, et al. (författare)
  • The Number of Signaling Pathways Altered by Driver Mutations in Chronic Lymphocytic Leukemia Impacts Disease Outcome
  • 2020
  • Ingår i: Clinical Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 1078-0432 .- 1557-3265. ; 26:6, s. 1507-1515
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose: Investigation of signaling pathways altered by recurrent gene mutations and their clinical impact in a consecutive cohort of patients with newly diagnosed chronic lymphocytic leukemia (CLL). The heterogeneous clinical course and genetic complexity of CLL warrant improved molecular prognostication. However, the prognostic value of recurrent mutations at the time of diagnosis remains unclear. Experimental Design: We sequenced samples from 314 consecutive, newly diagnosed patients with CLL to investigate the clinical impact of 56 recurrently mutated genes assessed by next-generation sequencing. Results: Mutations were identified in 70% of patients with enrichment among IGHV unmutated cases. With 6.5 years of follow-up, 15 mutated genes investigated at the time of diagnosis demonstrated significant impact on time to first treatment (TTFT). Carrying driver mutations was associated with shorter TTFT and poor overall survival. For outcome from CLL diagnosis, the number of signaling pathways altered by driver mutations stratified patients better than the number of driver mutations. Moreover, we demonstrated gradual impact on TTFT with increasing number of altered pathways independent of CLL-IPI risk. Thus, a 25-gene, pathway-based biomarker assessing recurrent mutations refines prognostication in CLL, in particular for CLL-IPI low- and intermediate-risk patients. External validation emphasized that a broad gene panel including low burden mutations was key for the biomarker based on altered pathways. Conclusions: We propose to include the number of pathways altered by driver mutations as a biomarker together with CLL-IPI in prospective studies of CLL from time of diagnosis for incorporation into clinical care and personalized follow-up and treatment.
  •  
2.
  • Leeksma, Alexander C., et al. (författare)
  • Genomic arrays identify high-risk chronic lymphocytic leukemia with genomic complexity : A multi-center study
  • 2020
  • Ingår i: Haematologica. - 0390-6078. ; 105:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Complex karyotype (CK) identified by chromosome-banding analysis (CBA) has shown prognostic value in chronic lymphocytic leukemia (CLL). Genomic arrays offer high-resolution genome-wide detection of copy-number alterations (CNAs) and could therefore be well equipped to detect the presence of a CK. Current knowledge on genomic arrays in CLL is based on outcomes of single center studies, in which different cutoffs for CNA calling were used. To further determine the clinical utility of genomic arrays for CNA assessment in CLL diagnostics, we retrospectively analyzed 2293 arrays from 13 diagnostic laboratories according to established standards. CNAs were found outside regions captured by CLL FISH probes in 34% of patients, and several of them including gains of 8q, deletions of 9p and 18p (p<0.01) were linked to poor outcome after correction for multiple testing. Patients (n=972) could be divided in three distinct prognostic subgroups based on the number of CNAs. Only high genomic complexity (high-GC), defined as 5 CNAs emerged as an independent adverse prognosticator on multivariable analysis for time to first treatment (Hazard ratio: 2.15, 95% CI: 1.36-3.41; p=0.001) and overall survival (Hazard ratio: 2.54, 95% CI: 1.54-4.17; p<0.001; n=528). Lowering the size cutoff to 1 Mb in 647 patients did not significantly improve risk assessment. Genomic arrays detected more chromosomal abnormalities and performed at least as well in terms of risk stratification compared to simultaneous chromosome banding analysis as determined in 122 patients. Our findings highlight genomic array as an accurate tool for CLL risk stratification.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy