SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martin Torres Javier) srt2:(2015-2019)"

Sökning: WFRF:(Martin Torres Javier) > (2015-2019)

  • Resultat 1-10 av 103
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Tinetti, Giovanna, et al. (författare)
  • The EChO science case
  • 2015
  • Ingår i: Experimental astronomy. - : Springer Science and Business Media LLC. - 0922-6435 .- 1572-9508. ; 40:2-3, s. 329-391
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of almost two thousand exoplanets has revealed an unexpectedly diverse planet population. We see gas giants in few-day orbits, whole multi-planet systems within the orbit of Mercury, and new populations of planets with masses between that of the Earth and Neptune-all unknown in the Solar System. Observations to date have shown that our Solar System is certainly not representative of the general population of planets in our Milky Way. The key science questions that urgently need addressing are therefore: What are exoplanets made of? Why are planets as they are? How do planetary systems work and what causes the exceptional diversity observed as compared to the Solar System? The EChO (Exoplanet Characterisation Observatory) space mission was conceived to take up the challenge to explain this diversity in terms of formation, evolution, internal structure and planet and atmospheric composition. This requires in-depth spectroscopic knowledge of the atmospheres of a large and well-defined planet sample for which precise physical, chemical and dynamical information can be obtained. In order to fulfil this ambitious scientific program, EChO was designed as a dedicated survey mission for transit and eclipse spectroscopy capable of observing a large, diverse and well-defined planet sample within its 4-year mission lifetime. The transit and eclipse spectroscopy method, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allows us to measure atmospheric signals from the planet at levels of at least 10(-4) relative to the star. This can only be achieved in conjunction with a carefully designed stable payload and satellite platform. It is also necessary to provide broad instantaneous wavelength coverage to detect as many molecular species as possible, to probe the thermal structure of the planetary atmospheres and to correct for the contaminating effects of the stellar photosphere. This requires wavelength coverage of at least 0.55 to 11 mu m with a goal of covering from 0.4 to 16 mu m. Only modest spectral resolving power is needed, with R similar to 300 for wavelengths less than 5 mu m and R similar to 30 for wavelengths greater than this. The transit spectroscopy technique means that no spatial resolution is required. A telescope collecting area of about 1 m(2) is sufficiently large to achieve the necessary spectro-photometric precision: for the Phase A study a 1.13 m(2) telescope, diffraction limited at 3 mu m has been adopted. Placing the satellite at L2 provides a cold and stable thermal environment as well as a large field of regard to allow efficient time-critical observation of targets randomly distributed over the sky. EChO has been conceived to achieve a single goal: exoplanet spectroscopy. The spectral coverage and signal-to-noise to be achieved by EChO, thanks to its high stability and dedicated design, would be a game changer by allowing atmospheric composition to be measured with unparalleled exactness: at least a factor 10 more precise and a factor 10 to 1000 more accurate than current observations. This would enable the detection of molecular abundances three orders of magnitude lower than currently possible and a fourfold increase from the handful of molecules detected to date. Combining these data with estimates of planetary bulk compositions from accurate measurements of their radii and masses would allow degeneracies associated with planetary interior modelling to be broken, giving unique insight into the interior structure and elemental abundances of these alien worlds. EChO would allow scientists to study exoplanets both as a population and as individuals. The mission can target super-Earths, Neptune-like, and Jupiter-like planets, in the very hot to temperate zones (planet temperatures of 300-3000 K) of F to M-type host stars. The EChO core science would be delivered by a three-tier survey. The EChO Chemical Census: This is a broad survey of a few-hundred exoplanets, which allows us to explore the spectroscopic and chemical diversity of the exoplanet population as a whole. The EChO Origin: This is a deep survey of a subsample of tens of exoplanets for which significantly higher signal to noise and spectral resolution spectra can be obtained to explain the origin of the exoplanet diversity (such as formation mechanisms, chemical processes, atmospheric escape). The EChO Rosetta Stones: This is an ultra-high accuracy survey targeting a subsample of select exoplanets. These will be the bright "benchmark" cases for which a large number of measurements would be taken to explore temporal variations, and to obtain two and three dimensional spatial information on the atmospheric conditions through eclipse-mapping techniques. If EChO were launched today, the exoplanets currently observed are sufficient to provide a large and diverse sample. The Chemical Census survey would consist of > 160 exoplanets with a range of planetary sizes, temperatures, orbital parameters and stellar host properties. Additionally, over the next 10 years, several new ground- and space-based transit photometric surveys and missions will come on-line (e.g. NGTS, CHEOPS, TESS, PLATO), which will specifically focus on finding bright, nearby systems. The current rapid rate of discovery would allow the target list to be further optimised in the years prior to EChO's launch and enable the atmospheric characterisation of hundreds of planets.
  •  
3.
  • Delgado-Bonal, Alfonso, et al. (författare)
  • Solar and wind exergy potentials for Mars
  • 2016
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 102, s. 550-558
  • Tidskriftsartikel (refereegranskat)abstract
    • The energy requirements of the planetary exploration spacecrafts constrain the lifetime of the missions, their mobility and capabilities, and the number of instruments onboard. They are limiting factors in planetary exploration. Several missions to the surface of Mars have proven the feasibility and success of solar panels as energy source. The analysis of the exergy efficiency of the solar radiation has been carried out successfully on Earth, however, to date, there is not an extensive research regarding the thermodynamic exergy efficiency of in-situ renewable energy sources on Mars. In this paper, we analyse the obtainable energy (exergy) from solar radiation under Martian conditions. For this analysis we have used the surface environmental variables on Mars measured in-situ by the Rover Environmental Monitoring Station onboard the Curiosity rover and from satellite by the Thermal Emission Spectrometer instrument onboard the Mars Global Surveyor satellite mission. We evaluate the exergy efficiency from solar radiation on a global spatial scale using orbital data for a Martian year; and in a one single location in Mars (the Gale crater) but with an appreciable temporal resolution (1 h). Also, we analyse the wind energy as an alternative source of energy for Mars exploration and compare the results with those obtained on Earth. We study the viability of solar and wind energy station for the future exploration of Mars, showing that a small square solar cell of 0.30 m length could maintain a meteorological station on Mars. We conclude that the low density of the atmosphere of Mars is responsible of the low thermal exergy efficiency of solar panels. It also makes the use of wind energy uneffective. Finally, we provide insights for the development of new solar cells on Mars.
  •  
4.
  •  
5.
  • Moyano-Cambero, Carles E., et al. (författare)
  • Petrographic and geochemical evidence for multiphase formation of carbonates in the Martian orthopyroxenite Allan Hills 84001
  • 2017
  • Ingår i: Meteoritics and Planetary Science. - : John Wiley & Sons. - 1086-9379 .- 1945-5100. ; 52:6, s. 1030-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Martian meteorites can provide valuable information about past environmental conditions on Mars. Allan Hills 84001 formed more than 4 Gyr ago, and owing to its age and long exposure to the Martian environment, and this meteorite has features that may record early processes. These features include a highly fractured texture, gases trapped during one or more impact events or during formation of the rock, and spherical Fe-Mg-Ca carbonates. In this study, we have concentrated on providing new insights into the context of these carbonates using a range of techniques to explore whether they record multiple precipitation and shock events. The petrographic features and compositional properties of these carbonates indicate that at least two pulses of Mg- and Fe-rich solutions saturated the rock. Those two generations of carbonates can be distinguished by a very sharp change in compositions, from being rich in Mg and poor in Fe and Mn, to being poor in Mg and rich in Fe and Mn. Between these two generations of carbonate is evidence for fracturing and local corrosion
  •  
6.
  • Ullán, Aurora, et al. (författare)
  • Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater
  • 2017
  • Ingår i: Icarus. - : Elsevier. - 0019-1035 .- 1090-2643. ; 288, s. 78-87
  • Tidskriftsartikel (refereegranskat)abstract
    • The Rover Environmental Monitoring Station (REMS) instrument on-board the Mars Science Laboratory (MSL) has acquired unprecedented measurements of key environmental variables at the base of Gale Crater. The pressure measured by REMS shows modulations with a very structured pattern of short-time scale (of the order of seconds to several minutes) mild fluctuations (typically up to 0.2 Pa at daytime and 1 Pa at night-time). These dynamic pressure oscillations are consistent with wind, air and ground temperature modulations measured simultaneously by REMS. We detect the signals of a repetitive pattern of upslope/downslope winds, with maximal speeds of about 21 m/s, associated with thermal changes in the air and surface temperatures, that are initiated after sunset and finish with sunrise proving that Gale, a 4.5 km deep impact crater, is an active Aeolian environment. At nighttime topographic slope winds are intense with maximal activity from 17:00 through 23:00 Local Mean Solar Time, and simultaneous changes of surface temperature are detected. During the day, the wind modulations are related to convection of the planetary boundary layer, winds are softer with maximum wind speed of about 14 m/s. The ground temperature is modulated by the forced convection of winds, with amplitudes between 0.2 K and 0.5 K, and the air temperatures fluctuate with amplitudes of about 2 K. The analysis of more than one and a half Martian years indicates the year-to-year repeatability of these environmental phenomena. The wind pattern minimizes at the beginning of the south hemisphere winter (Ls 90) season and maximizes during late spring and early summer (Ls 270). The procedure that we present here is a useful tool to investigate in a semi-quantitative way the winds by: i) filling both seasonal and diurnal gaps where wind measurements do not exist, ii) providing an alternative way for comparisons through different measuring principia and, iii) filling the gap of observation of short time-wind variability, where the REMS wind-sensor is blind
  •  
7.
  • Webster, Christopher R., et al. (författare)
  • Background levels of methane in Mars' atmosphere show strong seasonal variations
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 360:6393, s. 1093-1096
  • Tidskriftsartikel (refereegranskat)abstract
    • Variable levels of methane in the martian atmosphere have eluded explanation partly because the measurements are not repeatable in time or location. We report in situ measurements at Gale crater made over a 5-year period by the Tunable Laser Spectrometer on the Curiosity rover. The background levels of methane have a mean value 0.41 ± 0.16 parts per billion by volume (ppbv) (95% confidence interval) and exhibit a strong, repeatable seasonal variation (0.24 to 0.65 ppbv). This variation is greater than that predicted from either ultraviolet degradation of impact-delivered organics on the surface or from the annual surface pressure cycle. The large seasonal variation in the background and occurrences of higher temporary spikes (~7 ppbv) are consistent with small localized sources of methane released from martian surface or subsurface reservoirs.
  •  
8.
  • Azua-Bustos, Armando, et al. (författare)
  • Aeolian transport of viable microbial life across the Atacama Desert, Chile : Implications for Mars
  • 2019
  • Ingår i: Scientific Reports. - : Springer. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we inspect whether microbial life may disperse using dust transported by wind in the Atacama Desert in northern Chile, a well-known Mars analog model. By setting a simple experiment across the hyperarid core of the Atacama we found that a number of viable bacteria and fungi are in fact able to traverse the driest and most UV irradiated desert on Earth unscathed using wind-transported dust, particularly in the later afternoon hours. This finding suggests that microbial life on Mars, extant or past, may have similarly benefited from aeolian transport to move across the planet and find suitable habitats to thrive and evolve.
  •  
9.
  • Bhardwaj, Anshuman, et al. (författare)
  • A review on remotely sensed land surface temperature anomaly as an earthquake precursor
  • 2017
  • Ingår i: International Journal of Applied Earth Observation and Geoinformation. - : Elsevier. - 1569-8432 .- 1872-826X. ; 63, s. 158-166
  • Tidskriftsartikel (refereegranskat)abstract
    • The low predictability of earthquakes and the high uncertainty associated with their forecasts make earthquakes one of the worst natural calamities, capable of causing instant loss of life and property. Here, we discuss the studies reporting the observed anomalies in the satellite-derived Land Surface Temperature (LST) before an earthquake. We compile the conclusions of these studies and evaluate the use of remotely sensed LST anomalies as precursors of earthquakes. The arrival times and the amplitudes of the anomalies vary widely, thus making it difficult to consider them as universal markers to issue earthquake warnings. Based on the randomness in the observations of these precursors, we support employing a global-scale monitoring system to detect statistically robust anomalous geophysical signals prior to earthquakes before considering them as definite precursors.
  •  
10.
  • Bhardwaj, Anshuman, et al. (författare)
  • Are Slope Streaks Indicative of Global‐Scale Aqueous Processes on Contemporary Mars?
  • 2019
  • Ingår i: Reviews of geophysics. - : American Geophysical Union (AGU). - 8755-1209 .- 1944-9208. ; 57:1, s. 48-77
  • Tidskriftsartikel (refereegranskat)abstract
    • Slope streaks are prevalent and intriguing dark albedo surface features on contemporary Mars. Slope streaks are readily observed in the equatorial and subequatorial dusty regolith regions with low thermal inertia. They gradually fade over decadal timescales. The proposed mechanisms for their formation vary widely based on several physicochemical and geomorphological explanations. The scientific community is divided in proposing both dry and wet mechanisms for the formation of slope streaks. Here we perform a systematic evaluation of the literature for these wet and dry mechanisms. We discuss the probable constraints on the various proposed mechanisms and provide perspectives on the plausible process driving global‐scale slope streak formation on contemporary Mars. Although per our understanding, a thorough consideration of the global distribution of slope streaks, their morphology and topography, flow characteristics, physicochemical and atmospheric coincidences, and terrestrial analogies weighs more in favor of several wet mechanisms, we acknowledge that such wet mechanisms cannot explain all the reported morphological and terrain variations of slope streaks. Thus, we suggest that explanations considering both dry and wet processes can more holistically describe all the observed morphological variations among slope streaks. We further acknowledge the constraints on the resolutions of remote sensing data and on our understanding of the Martian mineralogy, climate, and atmosphere and recommend continuous investigations in this direction using future remote sensing acquisitions and simulations. In this regard, finding more wet and dry terrestrial analogs for Martian slope streaks and studying them at high spatiotemporal resolutions can greatly improve our understanding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 103
Typ av publikation
tidskriftsartikel (74)
konferensbidrag (25)
annan publikation (2)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (91)
övrigt vetenskapligt/konstnärligt (11)
populärvet., debatt m.m. (1)
Författare/redaktör
Martin-Torres, Javie ... (97)
Zorzano Mier, María- ... (35)
Zorzano, Maria Paz (22)
Bhardwaj, Anshuman (17)
Sam, Lydia (13)
Fonseca, Ricardo (8)
visa fler...
Wiens, R.C. (8)
Moores, John E. (8)
Lemmon, Mark T. (8)
Soria-Salinas, Álvar ... (7)
Cousin, A. (6)
Maurice, S. (6)
Zorzano, M.-P. (6)
Mathanlal, Thasshwin (6)
Vakkada Ramachandran ... (6)
Conrad, Pamela G. (6)
Mahaffy, Paul R. (6)
Vasavada, Ashwin R (6)
Forni, O. (5)
Gasnault, O. (5)
Mangold, N. (5)
Clark, B (5)
Le Mouélic, S. (5)
Mier, Maria-Paz Zorz ... (5)
Israel Nazarious, Mi ... (5)
Lasue, J. (5)
Blaney, D. (5)
Lanza, N. (5)
McKay, Christopher P ... (5)
Harri, Ari-Matti (5)
Kahanpää, Henrik (5)
Fabre, C. (4)
Singh, Shaktiman (4)
Navarro-Gonzalez, Ra ... (4)
Berger, G (4)
Newman, C.E. (4)
Freissinet, Caroline (4)
Meslin, P.Y. (4)
Rapin, W. (4)
Sautter, V. (4)
Goetz, W. (4)
Delgado-Bonal, Alfon ... (4)
Mendaza de Cal, Mari ... (4)
McConnochie, Timothy ... (4)
Wiens, Roger C. (4)
Genzer, Maria (4)
Rafkin, Scot C R (4)
Glavin, Daniel P. (4)
Cantor, Bruce (4)
Valentin-Serrano, Pa ... (4)
visa färre...
Lärosäte
Luleå tekniska universitet (101)
Lunds universitet (2)
Chalmers tekniska högskola (2)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
visa fler...
Malmö universitet (1)
Mittuniversitetet (1)
Karolinska Institutet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (102)
Spanska (1)
Forskningsämne (UKÄ/SCB)
Teknik (97)
Naturvetenskap (25)
Samhällsvetenskap (2)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy