SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Martin Torres Javier) srt2:(2020)"

Sökning: WFRF:(Martin Torres Javier) > (2020)

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Nazarious, Miracle Israel, 1992- (författare)
  • Scientific Instruments to Facilitate the Human Exploration of Mars
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This PhD thesis describes, from an engineering perspective, some of the preliminary steps that need to be implemented to facilitate the human exploration of Mars. It focuses on the development of a set of novel scientific or technology demonstrator instruments. The engineering problem starts with a conceptual idea and the definition of individual functional requirements, that may be related to scientific or technological objectives. To solve this problem, an unique approach adapted during this thesis, allowed for designing and building efficiently, testing and refining the instruments in multiple iterations using simple techniques like 3-D printing, breadboard prototyping and low-cost commercial off the shelf (COTS) components. This approach reduces the cost and facilitates the accessibility of space instrument design and testing to a broader community. The steps include demonstrating the operability of the concept with prototypes, calibrating the responses and validating their operation in representative environments, thereby raising the technology readiness level (TRL) of the instrument with a lower investment in time and resources than traditional approaches that use specialized components and fabrica-tion techniques.The thesis provides a detailed description of the design and development process, and discusses the calibration and validation results of four different instruments, namely: 1) Brine Observation Transition To Liquid Experiment (BOTTLE) as a part of HabitAbil-ity: Brines, Irradiation and Temperature (HABIT) instrument onboard the ESA/IKI’s ExoMars 2022 Surface Platform Kazachok, for investigating the surface environmen-tal conditions and demonstrating the capability of salts to absorb water on Mars, 2) Metabolt, a small-sized portable incubator to monitor the behaviour of the microbiome in soils, which will be a critical element of future greenhouses on Mars or the Moon, 3) Methanox, an in-situ resource utilization demonstrator for converting local resources on Mars and producing methane and ammonia as space fuel, and 4) PRessure Optimized PowEred Respirator (PROPER), a wearable cleanroom developed for protecting the hu-mans against biological pathogens, showing the direct applicability of this research to solve Earth-based problems. During the final phase of the PhD thesis, the world suffered the COVID-19 pandemic. This challenge provided an opportunity to test the approach presented in this thesis and inspired the development of this equipment, and may also be of relevance to protect from biological cross-contamination in planetary habitats and laboratories while handling local regolith materials and samples on Mars.This work also highlights the calibration of the HABIT Flight Model (FM) in the cleanroom of Omnisys Instruments AB, Sweden, defines the retrieval models that will be used during ExoMars 2022 mission operations and data archiving in the Planetary Science Archive (PSA). Parts of this thesis were already published in the form of peer-reviewed journal articles and conference abstracts.
  •  
3.
  • Escamilla-Roa, Elizabeth, et al. (författare)
  • DFT study of electronic and redox properties of TiO2 supported on olivine for modelling regolith on Moon and Mars conditions
  • 2020
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 180
  • Tidskriftsartikel (refereegranskat)abstract
    • Titanium dioxide TiO2 is one of the most studied oxides in photocatalysis, due to its electronic structure and its wide variety of applications, such as gas sensors and biomaterials, and especially in methane-reforming catalysis. Titanium dioxide and olivine have been detected both on Mars and our Moon. It has been postulated that on Mars photocatalytic processes may be relevant for atmospheric methane fluctuation, radicals and perchlorate productions etc. However, to date no investigation has been devoted to modelling the properties of TiO2 adsorbed on olivine surface.The goal of this study is to investigate at atomic level with electronic structure calculations based on the Density Functional Theory (DFT), the atomic interactions that take place during the adsorption processes for formation of a TiO regolith. This model is formed with different TiO films adsorbed on olivine (forsterite) surfaces, one of the most common minerals in Universe, Earth, Mars, cometary and interstellar dust. We propose three regolith models to simulate the principal phase of titanium oxide (TiO, Ti2O3 and TiO2). The models show different adsorption processes i.e. physisorption and chemisorption. Our results suggest that the TiO is the most reactive phase and produces a strong exothermic effect. Besides, we have detailed, from a theoretical point of view, the effect that has the adsorption process in the electronic properties such as electronic density of state (DOS) and oxide reduction process (redox). This theoretical study can be important to understand the formation of new materials (supports) that can be used as support in the catalytic processes that occur in the Earth, Mars and Moon. Also, it may be important to interpret the present day photochemistry and interaction of regolith and airborne aerosols in the atmosphere on Mars or to define possible catalytic reactions of the volatiles captured on the Moon regolith.
  •  
4.
  • Escamilla-Roa, Elizabeth, et al. (författare)
  • DFT study of the reduction reaction of calcium perchlorate on olivine surface : Implications to formation of Martian’s regolith
  • 2020
  • Ingår i: Applied Surface Science. - : Elsevier. - 0169-4332 .- 1873-5584. ; 512
  • Tidskriftsartikel (refereegranskat)abstract
    • Perchlorates have been found widespread on the surface of Mars, their origin and degradation pathways are not understood to date yet. We investigate here, from a theoretical point of view, the potential redox processes that take place in the interaction of Martian minerals such as olivine, with anhydrous and hydrated perchlorates. For this theoretical study, we take as mineral substrate the (1 0 0) surface of forsterite and calcium perchlorate salt as adsorbate. Our DFT calculations suggests a reduction pathway to chlorate and chlorite. When the perchlorate has more than 4 water molecules, this mechanism, which does not require high-temperature or high energy sources, results in parallel with the oxidation of the mineral surface, forming magnesium peroxide, MgO2, and in the formation of ClO3, which through photolysis is known to form ClO-O2. Because of the high UV irradiance that reaches the surface of Mars, this may be a source of O2 on Mars. Our results suggest that this process may be a natural removal pathway for perchlorates from the Martian regolith, which in the presence of atmospheric water for salt hydration, can furthermore lead to the production of oxygen. This mechanism may thus have implications on the present and future habitability of the Martian surface.
  •  
5.
  • Gebhardt, C., et al. (författare)
  • Fully Interactive and Refined Resolution Simulations of the Martian Dust Cycle by the MarsWRF Model
  • 2020
  • Ingår i: Journal of Geophysical Research - Planets. - : John Wiley & Sons. - 2169-9097 .- 2169-9100. ; 125:9
  • Tidskriftsartikel (refereegranskat)abstract
    • The MarsWRF model is set up with fully interactive dust at 5° × 5° and 2° × 2 resolution. The latter allows for a better representation of topography and other surface properties. An infinite reservoir of surface dust is assumed for both resolutions. For 5° × 5°, surface dust lifting by wind stress takes place over broad areas, occurring in about 20% of the model’s grid cells. For 2° × 2°, it is more spatially restricted, occurring in less than 5% of the grid cells, and somewhat reminiscent of the corridors Acidalia‐Chryse, Utopia‐Isidis, and Arcadia‐West of Tharsis. The onset times of major dust storms ‐ large regional storms or global dust storm events (GDEs) ‐ do not exhibit much inter‐annual variability, typically occurring at around Ls 260°. However, their magnitude does show significant inter‐annual variability ‐ with only small regional storms in some years, large regional storms in others, and some years with GDEs ‐ owing to the interaction between major dust lifting regions at low latitudes. The latter is consistent with observed GDEs having several active dust lifting centers. The model’s dust distribution is found to better agree with observation‐based albedo and dust cover index maps for the 2° × 2° run. For the latter, there is also significant surface dust lifting by wind stress in the aphelion season that is largely confined to the Hellas basin. It has a recurring time pattern of 2‐7 sols, possibly resulting from the interaction between mid‐latitude baroclinic systems and local downslope flows.
  •  
6.
  • Israel Nazarious, Miracle, et al. (författare)
  • Metabolt : An In-Situ Instrument to Characterize the Metabolic Activity of Microbial Soil Ecosystems Using Electrochemical and Gaseous Signatures
  • 2020
  • Ingår i: Sensors. - : MDPI. - 1424-8220. ; 20:16
  • Tidskriftsartikel (refereegranskat)abstract
    • Metabolt is a portable soil incubator to characterize the metabolic activity of microbial ecosystems in soils. It measures the electrical conductivity, the redox potential, and the concentration of certain metabolism-related gases in the headspace just above a given sample of regolith. In its current design, the overall weight of Metabolt, including the soils (250 g), is 1.9 kg with a maximum power consumption of 1.5 W. Metabolt has been designed to monitor the activity of the soil microbiome for Earth and space applications. In particular, it can be used to monitor the health of soils, the atmospheric-regolith fixation, and release of gaseous species such as N2, H2O, CO2, O2, N2O, NH3, etc., that affect the Earth climate and atmospheric chemistry. It may be used to detect and monitor life signatures in soils, treated or untreated, as well as in controlled environments like greenhouse facilities in space, laboratory research environments like anaerobic chambers, or simulating facilities with different atmospheres and pressures. To illustrate its operation, we tested the instrument with sub-arctic soil samples at Earth environmental conditions under three different conditions: (i) no treatment (unperturbed); (ii) sterilized soil: after heating at 125 °C for 35.4 h (thermal stress); (iii) stressed soil: after adding 25% CaCl2 brine (osmotic stress); with and without addition of 0.5% glucose solution (for control). All the samples showed some distinguishable metabolic response, however there was a time delay on its appearance which depends on the treatment applied to the samples: 80 h for thermal stress without glucose, 59 h with glucose; 36 h for osmotic stress with glucose and no significant reactivation in the pure water case. This instrument shows that, over time, there is a clear observable footprint of the electrochemical signatures in the redox profile which is complementary to the gaseous footprint of the metabolic activity through respiration.
  •  
7.
  • Israel Nazarious, Miracle, et al. (författare)
  • Pressure Optimized PowEred Respirator (PROPER) : A miniaturized wearable cleanroom and biosafety system for aerially transmitted viral infections such as COVID-19
  • 2020
  • Ingår i: HardwareX. - : Elsevier. - 2468-0672. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The supply of Personal Protective Equipment (PPE) in hospitals to keep the Health Care Professionals (HCP) safe taking care of patients may be limited, especially during the outbreak of a new disease. In particular, the face and body protective equipment is critical to prevent the wearer from exposure to pathogenic biological airborne particulates. This situation has been now observed worldwide during the onset of the COVID-19 pandemic. As concern over shortages of PPE at hospitals grows, we share with the public and makers’ community the Pressure Optimized PowEred Respirator (PROPER) equipment, made out of COTS components. It is functionally equivalent to a Powered Air Purifying Respirator (PAPR). PROPER, a hood-based system which uses open source and easily accessible components is low-cost, relatively passive in terms of energy consumption and mechanisms, and easy and fast to 3D print, build and assemble. We have adapted our experience on building clean room environments and qualifying the bioburden of space instruments to this solution, which is in essence a miniaturized, personal, wearable cleanroom. PROPER would be able to offer better protection than an N95 respirator mask, mainly because it is insensitive to seal fit and it shields the eyes as well. The PROPER SMS fabric is designed for single-use and not intended for reuse, as they may start to tear and fail but the rest of the parts can be disinfected and reused. We provide a set of guidelines to build a low-cost 3D printed solution for an effective PAPR system and describe the procedures to validate it to comply with the biosafety level 3 requirements. We have validated the prototype of PROPER unit for air flow, ISO class cleanliness level, oxygen and carbon-dioxide gas concentrations during exhalation, and present here these results for illustration. We demonstrate that the area inside the hood is more than 200 times cleaner than the external ambient without the operator and more than 175 times with the operator and in an aerosol exposed environment. We also include the procedure to clean and disinfect the equipment for reuse. PROPER may be a useful addition to provide protection to HCPs against the SARS-CoV-2 virus or other potential future viral diseases that are transmitted aerially.
  •  
8.
  • Konatham, Samuel, et al. (författare)
  • Atmospheric composition of exoplanets based on the thermal escape of gases and implications for habitability
  • 2020
  • Ingår i: Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences. - : Royal Society. - 1364-5021 .- 1471-2946. ; 476:2241
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of habitable exoplanets is an exciting scientific and technical challenge. Owing to the current and most likely long-lasting impossibility of performing in situ exploration of exoplanets, their study and hypotheses regarding their capability to host life will be based on the restricted low-resolution spatial and spectral information of their atmospheres. On the other hand, with the advent of the upcoming exoplanet survey missions and technological improvements, there is a need for preliminary discrimination that can prioritize potential candidates within the fast-growing list of exoplanets. Here we estimate, for the first time and using the kinetic theory of gases, a list of the possible atmospheric species that can be retained in the atmospheres of the known exoplanets. We conclude that, based on our current knowledge of the detected exoplanets, 45 of them are good candidates for habitability studies. These exoplanets could have Earth-like atmospheres and should be able to maintain stable liquid water. Our results suggest that the current definition of a habitable zone around a star should be revisited and that the capacity of the planet to host an Earth-like atmosphere to support the stability of liquid water should be added.
  •  
9.
  • Martin-Torres, Javier, et al. (författare)
  • The HABIT (HabitAbility: Brine Irradiation and Temperature) environmental instrument for the ExoMars 2022 Surface Platform
  • 2020
  • Ingår i: Planetary and Space Science. - : Elsevier. - 0032-0633 .- 1873-5088. ; 190
  • Tidskriftsartikel (refereegranskat)abstract
    • The HABIT (HabitAbility: Brine Irradiation and Temperature) instrument is a European payload of the ExoMars 2022 Surface Platform Kazachok that will characterize the present-day habitability at its landing place in Oxia Planum, Mars. HABIT consists of two modules: (i) EnvPack (Environmental Package) that monitors the thermal environment (air and ground), the incident ultraviolet radiation, the near surface winds and the atmospheric dust cycle; and (ii) BOTTLE (Brine Observation Transition To Liquid Experiment), an In-situ Resource Utilization instrument to produce liquid water for future Mars exploration. BOTTLE will be used also to investigate the electrical conductivity properties of the martian atmosphere, the present-day atmospheric-ground water cycle and to evaluate if liquid water can exist on Mars in the form of brines, and for how long. These variables measured by HABIT are critical to determine the present and future habitability of the martian surface. In this paper, we describe in detail the HABIT instrument and sensors, together with the calibration of its Flight Model (FM) and the Engineering Qualification Model (EQM) versions. The EnvPack module has heritage from previous missions operating on the surface of Mars, and the environmental observations of its sensors will be directly comparable to those delivered by those missions. HABIT can provide information of the local temperature with ±0.2 °C accuracy, local winds with ±0.3 m/s, surface brightness temperature with ±0.8 °C, incident UV irradiance with 10% error of its absolute value in the UV-A, UV-B, UV-C ranges, as well as in the total UV-ABC range, and two additional wavebands, dedicated to ozone absorption. The UV observations can be used to derive the total opacity column and thus monitor the dust and ozone cycles. BOTTLE can demonstrate the hydration state of a set of four deliquescent salts, which have been found on Mars (calcium chloride, ferric sulphate, magnesium perchlorate and sodium perchlorate) by monitoring their electric conductivity (EC). The EC of the air and the dry salts under Earth ambient, clean room conditions is of the order of 0.1 μScm−1. We have simulated HABIT operations, within an environmental chamber, under martian conditions similar to those expected at Oxia Planum. For dry, CO2 atmospheric conditions at martian pressures, the air EC can be as low as 10−8 μScm−1, however it increases with the relative humidity (RH) percentage. The laboratory experiments show that after an increase from 0 to 60% RH within a few hours, the EC of the air increased up to 10−1 μScm−1, magnesium perchlorate hydrated and reached values of 10 μScm-1, whereas calcium chloride deliquesced forming a liquid state with EC of 102 μScm−1. HABIT will operate with a regular cadence, through day and night. The Electronic Unit (EU) is protected with a heater that is activated when its temperature is below −33 °C and disabled if the temperature of the surface platform rises above −30 °C. Additionally, the heaters of the BOTTLE unit can be activated to dehydrate the salts and reset the experiment. HABIT weighs only 918 g. Its power consumption depends on the operation mode and internal temperature, and it varies between 0.7 W, for nominal operation, and 13.1 W (when heaters are turned on at full intensity). HABIT has a baseline data rate of 1.5 MB/sol. In addition to providing critical environmental observations, this light and robust instrument, will be the first demonstrator of a water capturing system on the surface of Mars, and the first European In-Situ Resource Utilization in the surface of another planet.
  •  
10.
  • Mathanlal, Thasshwin, et al. (författare)
  • ATMO-Vent : an adapted breathing atmosphere for COVID-19 patients
  • 2020
  • Ingår i: HardwareX. - : Elsevier. - 2468-0672. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19), has been one of the most significant challenges to humankind in centuries. The extremely contagious nature of the SARS-CoV-2 virus has put forth an immense pressure on the health sector. In order to mitigate the stress on the healthcare systems especially to battle the crisis of mechanical ventilators, we have designed a modular, and robust DIY ventilator, ATMO-Vent (Atmospheric Mixture Optimization Ventilator) which can be fully mounted within two days by two operators. The ATMO-Vent has been designed using low-cost, robust, Commercial Off The Shelf (COTS) components, with many features comparable to a full-fledged ventilator. ATMO-Vent has been designed based on the United Kingdom Medicines & Healthcare products Regulatory Agency (UK-MHRA) guidelines for Rapidly Manufactured Ventilator System (RMVS), yet scalable to the specific requirements of different countries. ATMO-Vent is capable of adjusting the Fraction of Inspiratory Oxygen (FiO2) levels, Tidal Volume (TV), frequency of breaths, Inspiratory/Expiratory ratio (I/E), Peak Inspiratory Pressure (PIP) and Positive End-Expiratory Pressure (PEEP). ATMO-Vent can operate in two modes - Continuous Mandatory Ventilation (CMV) using Volume-Controlled Ventilation (VCV) and in Assisted Control (AC) mode with pressure triggered by the patient. ATMO-Vent has undergone rigorous testing and qualifies under Class B Electric and Magnetic Compatibility (EMC) requirements of EN 55011 CISPR 11 standards.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23
Typ av publikation
tidskriftsartikel (19)
doktorsavhandling (3)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (20)
övrigt vetenskapligt/konstnärligt (3)
Författare/redaktör
Bhardwaj, Anshuman (2)
Alonso, Alejandro (1)
Wang, Kai (1)
Helleday, Thomas (1)
Sun, Kai (1)
Wang, Xin (1)
visa fler...
Wang, Yi (1)
Paling, Sean (1)
Zhang, Qian (1)
Xu, Xin (1)
Smith, Caroline (1)
Loseva, Olga (1)
Chen, Yan (1)
Malhi, Yadvinder (1)
Lewis, Simon L. (1)
Fauset, Sophie (1)
Affum-Baffoe, Kofi (1)
Baker, Timothy R. (1)
Hubau, Wannes (1)
Phillips, Oliver L. (1)
Benitez, Javier (1)
Chen, Junyu (1)
Wang, Wei (1)
Martin, Michael (1)
Garcia, David (1)
Chen, Shengbin (1)
Rigon, Luca (1)
Jonsson, Martin (1)
Lawrence, Jack (1)
Singh, Shaktiman (1)
Hemp, Andreas (1)
Fischer, Markus (1)
Brasas, Valentas (1)
wang, Ping (1)
Altun, Mikael (1)
Wang, Li (1)
El-Andaloussi, Samir (1)
Xu, Hao (1)
Shi, Wei (1)
Krokan, Hans E (1)
Cheng, Cheng (1)
Wang, Sihan (1)
Stenmark, Pål (1)
Yang, Fan (1)
Ibrahim, Ahmed (1)
Lawes, Michael J (1)
Senbeta, Feyera (1)
Anitha, K. (1)
Joseph, Shijo (1)
Xu, Sheng (1)
visa färre...
Lärosäte
Luleå tekniska universitet (20)
Umeå universitet (1)
Kungliga Tekniska Högskolan (1)
Uppsala universitet (1)
Stockholms universitet (1)
Lunds universitet (1)
visa fler...
Chalmers tekniska högskola (1)
Karolinska Institutet (1)
visa färre...
Språk
Engelska (23)
Forskningsämne (UKÄ/SCB)
Teknik (20)
Naturvetenskap (6)
Medicin och hälsovetenskap (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy