SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(McGuire A. David) srt2:(2015-2019)"

Sökning: WFRF:(McGuire A. David) > (2015-2019)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
2.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
3.
  • McGuire, A. David, et al. (författare)
  • Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 30:7, s. 1015-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • A significant portion of the large amount of carbon (C) currently stored in soils of the permafrost region in the Northern Hemisphere has the potential to be emitted as the greenhouse gases CO2 and CH4 under a warmer climate. In this study we evaluated the variability in the sensitivity of permafrost and C in recent decades among land surface model simulations over the permafrost region between 1960 and 2009. The 15 model simulations all predict a loss of near-surface permafrost (within 3m) area over the region, but there are large differences in the magnitude of the simulated rates of loss among the models (0.2 to 58.8x10(3)km(2)yr(-1)). Sensitivity simulations indicated that changes in air temperature largely explained changes in permafrost area, although interactions among changes in other environmental variables also played a role. All of the models indicate that both vegetation and soil C storage together have increased by 156 to 954TgCyr(-1) between 1960 and 2009 over the permafrost region even though model analyses indicate that warming alone would decrease soil C storage. Increases in gross primary production (GPP) largely explain the simulated increases in vegetation and soil C. The sensitivity of GPP to increases in atmospheric CO2 was the dominant cause of increases in GPP across the models, but comparison of simulated GPP trends across the 1982-2009 period with that of a global GPP data set indicates that all of the models overestimate the trend in GPP. Disturbance also appears to be an important factor affecting C storage, as models that consider disturbance had lower increases in C storage than models that did not consider disturbance. To improve the modeling of C in the permafrost region, there is the need for the modeling community to standardize structural representation of permafrost and carbon dynamics among models that are used to evaluate the permafrost C feedback and for the modeling and observational communities to jointly develop data sets and methodologies to more effectively benchmark models.
  •  
4.
  • Ramirez, Kelly S., et al. (författare)
  • Detecting macroecological patterns in bacterial communities across independent studies of global soils
  • 2018
  • Ingår i: Nature Microbiology. - : NATURE PUBLISHING GROUP. - 2058-5276. ; 3:2, s. 189-196
  • Tidskriftsartikel (refereegranskat)abstract
    • The emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries. Whereas previous meta-analysis efforts have focused on bacterial diversity measures or abundances of major taxa, we show that disparate amplicon sequence data can be combined at the taxonomy-based level to assess bacterial community structure. We find that rarer taxa are more important for structuring soil communities than abundant taxa, and that these rarer taxa are better predictors of community structure than environmental factors, which are often confounded across studies. We conclude that combining data from independent studies can be used to explore bacterial community dynamics, identify potential 'indicator' taxa with an important role in structuring communities, and propose hypotheses on the factors that shape bacterial biogeography that have been overlooked in the past.
  •  
5.
  • Luo, Yiqi, et al. (författare)
  • Toward more realistic projections of soil carbon dynamics by Earth system models
  • 2016
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236. ; 30:1, s. 40-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.
  •  
6.
  • Wang, Wenli, et al. (författare)
  • Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region
  • 2016
  • Ingår i: Cryosphere. - : Copernicus GmbH. - 1994-0416. ; 10:4, s. 1721-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyse simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models, and compare them with observations from 268 Russian stations. There are large cross-model differences in the simulated differences between near-surface soil and air temperatures (ΔT; 3 to 14 °C), in the sensitivity of soil-to-air temperature (0.13 to 0.96 °C °C-1), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, hence guide improvements to the model's conceptual structure and process parameterisations. Models with better performance apply multilayer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between the sophistication of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, because several other factors, such as soil depth used in the models, the treatment of soil organic matter content, hydrology and vegetation cover, also affect the simulated permafrost distribution.
  •  
7.
  • Xia, Jianyang, et al. (författare)
  • Terrestrial ecosystem model performance in simulating productivity and its vulnerability to climate change in the northern permafrost region
  • 2017
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953. ; 122:2, s. 430-446
  • Tidskriftsartikel (refereegranskat)abstract
    • Realistic projection of future climate-carbon (C) cycle feedbacks requires better understanding and an improved representation of the C cycle in permafrost regions in the current generation of Earth system models. Here we evaluated 10 terrestrial ecosystem models for their estimates of net primary productivity (NPP) and responses to historical climate change in permafrost regions in the Northern Hemisphere. In comparison with the satellite estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS; 246±6gCm-2yr-1), most models produced higher NPP (309±12gCm-2yr-1) over the permafrost region during 2000-2009. By comparing the simulated gross primary productivity (GPP) with a flux tower-based database, we found that although mean GPP among the models was only overestimated by 10% over 1982-2009, there was a twofold discrepancy among models (380 to 800gCm-2yr-1), which mainly resulted from differences in simulated maximum monthly GPP (GPPmax). Most models overestimated C use efficiency (CUE) as compared to observations at both regional and site levels. Further analysis shows that model variability of GPP and CUE are nonlinearly correlated to variability in specific leaf area and the maximum rate of carboxylation by the enzyme Rubisco at 25°C (Vcmax_25), respectively. The models also varied in their sensitivities of NPP, GPP, and CUE to historical changes in climate and atmospheric CO2 concentration. These results indicate that model predictive ability of the C cycle in permafrost regions can be improved by better representation of the processes controlling CUE and GPPmax as well as their sensitivity to climate change.
  •  
8.
  • Li, Zhao, et al. (författare)
  • Non-uniform seasonal warming regulates vegetation greening and atmospheric CO2 amplification over northern lands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • The enhanced vegetation growth by climate warming plays a pivotal role in amplifying the seasonal cycle of atmospheric CO2 at northern lands (>50° N) since 1960s. However, the correlation between vegetation growth, temperature and seasonal amplitude of atmospheric CO2 concentration have become elusive with the slowed increasing trend of vegetation growth and weakened temperature control on CO2 uptake since late 1990s. Here, based on in situ atmospheric CO2 concentration records from the Barrow observatory site, we found a slowdown in the increasing trend of the atmospheric CO2 amplitude from 1990s to mid-2000s. This phenomenon was associated with the paused decrease in the minimum CO2 concentration ([CO2]min), which was significantly correlated with the slowdown of vegetation greening and growing-season length extension. We then showed that both the vegetation greenness and growing-season length were positively correlated with spring but not autumn temperature over the northern lands. Furthermore, such asymmetric dependences of vegetation growth upon spring and autumn temperature cannot be captured by the state-of-art terrestrial biosphere models. These findings indicate that the responses of vegetation growth to spring and autumn warming are asymmetric, and highlight the need of improving autumn phenology in the models for predicting seasonal cycle of atmospheric CO2 concentration.
  •  
9.
  • Parmentier, Frans-Jan, et al. (författare)
  • Rising methane emissions from northern wetlands associated with sea ice decline
  • 2015
  • Ingår i: Geophysical Research Letters. - 1944-8007. ; 42:17, s. 7214-7222
  • Tidskriftsartikel (refereegranskat)abstract
    • The Arctic is rapidly transitioning toward a seasonal sea ice-free state, perhaps one of the most apparent examples of climate change in the world. This dramatic change has numerous consequences, including a large increase in air temperatures, which in turn may affect terrestrial methane emissions. Nonetheless, terrestrial and marine environments are seldom jointly analyzed. By comparing satellite observations of Arctic sea ice concentrations to methane emissions simulated by three process-based biogeochemical models, this study shows that rising wetland methane emissions are associated with sea ice retreat. Our analyses indicate that simulated high-latitude emissions for 2005-2010 were, on average, 1.7 Tg CH4 yr(-1) higher compared to 1981-1990 due to a sea ice-induced, autumn-focused, warming. Since these results suggest a continued rise in methane emissions with future sea ice decline, observation programs need to include measurements during the autumn to further investigate the impact of this spatial connection on terrestrial methane emissions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (9)
Typ av innehåll
refereegranskat (9)
Författare/redaktör
McGuire, A. David (7)
Schuur, Edward A. G. (2)
Dorrepaal, Ellen (2)
Nevanlinna, Heli (1)
Blomqvist, Carl (1)
Aittomäki, Kristiina (1)
visa fler...
Neven, Patrick (1)
Chang-Claude, Jenny (1)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
visa färre...
Lärosäte
Lunds universitet (7)
Umeå universitet (2)
Stockholms universitet (2)
Göteborgs universitet (1)
Uppsala universitet (1)
Karolinska Institutet (1)
visa fler...
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (7)
Medicin och hälsovetenskap (1)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy