SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Naylor Andrew J.) srt2:(2020-2021)"

Sökning: WFRF:(Naylor Andrew J.) > (2020-2021)

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Niemi, MEK, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Tapia-Ruiz, Nuria, et al. (författare)
  • 2021 roadmap for sodium-ion batteries
  • 2021
  • Ingår i: Journal of Physics. - : Institute of Physics Publishing (IOPP). - 2515-7655. ; 3:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Increasing concerns regarding the sustainability of lithium sources, due to their limited availability and consequent expected price increase, have raised awareness of the importance of developing alternative energy-storage candidates that can sustain the ever-growing energy demand. Furthermore, limitations on the availability of the transition metals used in the manufacturing of cathode materials, together with questionable mining practices, are driving development towards more sustainable elements. Given the uniformly high abundance and cost-effectiveness of sodium, as well as its very suitable redox potential (close to that of lithium), sodium-ion battery technology offers tremendous potential to be a counterpart to lithium-ion batteries (LIBs) in different application scenarios, such as stationary energy storage and low-cost vehicles. This potential is reflected by the major investments that are being made by industry in a wide variety of markets and in diverse material combinations. Despite the associated advantages of being a drop-in replacement for LIBs, there are remarkable differences in the physicochemical properties between sodium and lithium that give rise to different behaviours, for example, different coordination preferences in compounds, desolvation energies, or solubility of the solid-electrolyte interphase inorganic salt components. This demands a more detailed study of the underlying physical and chemical processes occurring in sodium-ion batteries and allows great scope for groundbreaking advances in the field, from lab-scale to scale-up. This roadmap provides an extensive review by experts in academia and industry of the current state of the art in 2021 and the different research directions and strategies currently underway to improve the performance of sodium-ion batteries. The aim is to provide an opinion with respect to the current challenges and opportunities, from the fundamental properties to the practical applications of this technology.
  •  
3.
  • Costa, Sara I. R., et al. (författare)
  • Surface engineering strategy using urea to improve the rate performance of Na2Ti3O7 in Na-ion batteries
  • 2021
  • Ingår i: Chemistry - A European Journal. - : John Wiley & Sons. - 0947-6539 .- 1521-3765. ; 27:11, s. 3875-3886
  • Tidskriftsartikel (refereegranskat)abstract
    • Na2Ti3O7 (NTO) is considered a promising anode material for Na-ion batteries due to its layered structure with an open framework and low and safe average operating voltage of 0.3 V vs. Na+/Na. However, its poor electronic conductivity needs to be addressed to make this material attractive for practical applications among other anode choices. Here, we report a safe, controllable and affordable method using urea that significantly improves the rate performance of NTO by producing surface defects such as oxygen vacancies and hydroxyl groups, and the secondary phase Na2Ti6O13. The enhanced electrochemical performance agrees with the higher Na+ ion diffusion coefficient, higher charge carrier density and reduced bandgap observed in these samples, without the need of nanosizing and/or complex synthetic strategies. A comprehensive study using a combination of diffraction, microscopic, spectroscopic and electrochemical techniques supported by computational studies based on DFT calculations, was carried out to understand the effects of this treatment on the surface, chemistry and electronic and charge storage properties of NTO. This study underscores the benefits of using urea as a strategy for enhancing the charge storage properties of NTO and thus, unfolding the potential of this material in practical energy storage applications.
  •  
4.
  • Colbin, Simon, et al. (författare)
  • A Halogen‐Free and Flame‐Retardant Sodium Electrolyte Compatible with Hard Carbon Anodes
  • 2021
  • Ingår i: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 8:23
  • Tidskriftsartikel (refereegranskat)abstract
    • For sodium-ion batteries, two pressing issues concerning electrolytes are flammability and compatibility with hard carbon anode materials. Non-flammable electrolytes that are sufficiently stable against hard carbon have—to the authors’ knowledge—previously only been obtained by either the use of high salt concentrations or additives. Herein, the authors present a simple, fluorine-free, and flame-retardant electrolyte which is compatible with hard carbon: 0.38 m sodium bis(oxalato)borate (NaBOB) in triethyl phosphate (TEP). A variety of techniques are employed to characterize the physical properties of the electrolyte, and to evaluate the electrochemical performance in full-cell sodium-ion batteries. The results reveal that the conductivity is sufficient for battery operation, no significant self-discharge occurs, and a satisfactory passivation is enabled by the electrolyte. In fact, a mean discharge capacity of 107 ± 4 mAh g−1 is achieved at the 1005th cycle, using Prussian white cathodes and hard carbon anodes. Hence, the studied electrolyte is a promising candidate for use in sodium-ion batteries.
  •  
5.
  • Gond, Ritambhara, et al. (författare)
  • A Lignosulfonate Binder for Hard Carbon Anodes in Sodium-Ion Batteries : A Comparative Study
  • 2021
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : American Chemical Society. - 2168-0485. ; 9:37, s. 12708-
  • Tidskriftsartikel (refereegranskat)abstract
    • An important factor in the development of sodium-ion batteries (SIBs) is the use of cheap and sustainable materials. Sodium lignosulfonate, a lignin derivative, is demonstrated here as an attractive, "green", water-soluble, and potentially cost-effective binder for use in hard carbon anodes for SIBs. A comparison of its battery cycling performance is made against other binders including sodium carboxymethyl cellulose and lignin, obtained from the kraft process, as well as sodium alginate, derived from algae. Apart from lignin, which requires processing in N-methyl-2-pyrrolidone, the other three binders are water-soluble. Lignosulfonate shows comparable or better performance, with high capacity retention and stability, when using 1 M NaPF6 in propylene carbonate or ethylene carbonate:diethyl carbonate electrolytes for both half- and full-cells (against a Prussian white cathode). Further improvements are observed when including styrene-butadiene rubber as a co-binder. X-ray photoelectron spectroscopy demonstrates similar solid electrolyte interphase compositions after the initial sodium insertion for both lignosulfonate and carboxymethyl cellulose binders. However, after subsequent cycling, the surface layer composition and thickness are found to be dependent on the binder. For the lignosulfonate-based electrode, the layer appears thicker but comprises a smaller fraction of carbon-oxygen species. © 2021 The Authors.
  •  
6.
  • Gond, Ritambhara, et al. (författare)
  • Non-flammable liquid electrolytes for safe batteries
  • 2021
  • Ingår i: Materials Horizons. - : Royal Society of Chemistry. - 2051-6347 .- 2051-6355. ; 8:11, s. 2913-2928
  • Tidskriftsartikel (refereegranskat)abstract
    • With continual increments in energy density gradually boosting the performance of rechargeable alkali metal ion (e.g. Li+, Na+, K+) batteries, their safe operation is of growing importance and needs to be considered during their development. This is essential, given the high-profile incidents involving battery fires as portrayed by the media. Such hazardous events result from exothermic chemical reactions occurring between the flammable electrolyte and the electrode material under abusive operating conditions. Some classes of non-flammable organic liquid electrolytes have shown potential towards safer batteries with minimal detrimental effect on cycling and, in some cases, even enhanced performance. This article reviews the state-of-the-art in non-flammable liquid electrolytes for Li-, Na- and K-ion batteries. It provides the reader with an overview of carbonate, ether and phosphate-based organic electrolytes, co-solvated electrolytes and electrolytes with flame-retardant additives as well as highly concentrated and locally highly concentrated electrolytes, ionic liquids and inorganic electrolytes. Furthermore, the functionality and purpose of the components present in typical non-flammable mixtures are discussed. Moreover, many non-flammable liquid electrolytes are shown to offer improved cycling stability and rate capability compared to conventional flammable liquid electrolytes.
  •  
7.
  • Hernández, Guiomar, et al. (författare)
  • Elimination of Fluorination : The Influence of Fluorine-Free Electrolytes on the Performance of LiNi1/3Mn1/3Co1/3O2/Silicon-Graphite Li-Ion Battery Cells
  • 2020
  • Ingår i: ACS Sustainable Chemistry and Engineering. - : AMER CHEMICAL SOC. - 2168-0485. ; 8:27, s. 10041-10052
  • Tidskriftsartikel (refereegranskat)abstract
    • In the quest for environmentally friendly and safe batteries, moving from fluorinated electrolytes that are toxic and release corrosive compounds, such as HF, is a necessary step. Here, the effects of electrolyte fluorination are investigated for full cells combining silicon- graphite composite electrodes with Li-Ni1/3Mn1/3Co1/3O2 (NMC111) cathodes, a viable cell chemistry for a range of potential battery applications, by means of electrochemical testing and postmortem surface analysis. A fluorine-free electrolyte based on lithium bis(oxalato) borate (LiBOB) and vinylene carbonate (VC) is able to provide higher discharge capacity (147 mAh g(NMC)(-1)) and longer cycle life at C/10 (84.4% capacity retention after 200 cycles) than a cell with a highly fluorinated electrolyte containing LiPF6, fluoroethylene carbonate (FEC) and VC. The cell with the fluorine-free electrolyte is able to form a stable solid electrolyte interphase (SEI) layer, has low overpotential, and shows a slow increase in cell resistance that leads to improved electrochemical performance. Although the power capability is limiting the performance of the fluorine-free electrolyte due to higher interfacial resistance, it is still able to provide long cycle life at C/2 and outperforms the highly fluorinated electrolyte at 40 degrees C. X-ray photoelectron spectroscopy (XPS) results showed a F-rich SEI with the highly fluorinated electrolyte, while the fluorine-free electrolyte formed an O-rich SEI. Although their composition is different, the electrochemical results show that both the highly fluorinated and fluorine-free electrolytes are able to stabilize the silicon-based anode and support stable cycling in full cells. While these results demonstrate the possibility to use a nonfluorinated electrolyte in high-energy-density full cells, they also address new challenges toward environmentally friendly and nontoxic electrolytes.
  •  
8.
  • Källquist, Ida, et al. (författare)
  • Influence of Electrolyte Additives on the Degradation of Li2VO2F Li-Rich Cathodes
  • 2020
  • Ingår i: The Journal of Physical Chemistry C. - : AMER CHEMICAL SOC. - 1932-7447 .- 1932-7455. ; 124:24, s. 12956-12967
  • Tidskriftsartikel (refereegranskat)abstract
    • rich disordered rock-salt structures have, because of their high theoretical capacity, gained a lot of attention as a promising class of cathode materials for battery applications. However, the cycling stability of these materials has so far been less satisfactory. Here, we present three different film-forming electrolyte additives: lithium bis(oxalato)borate (LiBOB), lithium difluoro(oxalato)borate (LiODFB), and glycolide, which all improve the cycling performance of the high-capacity Li-rich disordered rock-salt material Li2VO2F. The best performing additive, LiODFB, shows a 12.5% increase of capacity retention after 20 cycles. The improved cycling performance is explained by the formation of a protective cathode interphase on the electrode surface. Photoelectron spectroscopy is used to show that the surface layer is created from degradation of the electrolyte salt and additive cosalts. The cathode interphase can mitigate oxidation and following degradation of the active material, and thereby a higher degree of redox-active vanadium can be maintained after 20 cycles.
  •  
9.
  • Liu, Haidong, et al. (författare)
  • Understanding the Roles of Tris(trimethylsilyl) Phosphite (TMSPi) in LiNi0.8Mn0.1Co0.1O2 (NMC811)/Silicon-Graphite (Si-Gr) Lithium-Ion Batteries
  • 2020
  • Ingår i: Advanced Materials Interfaces. - : WILEY. - 2196-7350. ; 7:15
  • Tidskriftsartikel (refereegranskat)abstract
    • The coupling of nickel-rich LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes with high-capacity silicon-graphite (Si-Gr) anodes is one promising route to further increase the energy density of lithium-ion batteries. Practically, however, the cycle life of such cells is seriously hindered due to continuous electrolyte degradation on the surfaces of both electrodes. In this study, tris(trimethylsilyl) phosphite (TMSPi) is introduced as an electrolyte additive to improve the electrochemical performance of the NMC811/Si-Gr full cells through formation of protective surface layers at the electrode/electrolyte interfaces. This is thought to prevent the surface fluorination of the active materials and enhance interfacial stability. Notably, TMSPi is shown to significantly reduce the overpotential and operando X-ray diffraction (XRD) confirms that an irreversible "two-phase" transition reaction caused by the formed adventitious Li2CO3 layer on the surface of NMC811 can transfer to a solid-solution reaction mechanism with TMSPi-added electrolyte. Moreover, influences of TMSPi on the cathode electrolyte interphase (CEI) on the NMC811 and solid electrolyte interphase (SEI) on the Si-Gr are systematically investigated by electron microscopy and synchrotron-based X-ray photoelectron spectroscopy which allows for the nondestructive depth-profiling analysis of chemical compositions and oxidation states close to the electrode surfaces.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy