SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Nygren Peter) srt2:(2000-2004);srt2:(2002)"

Sökning: WFRF:(Nygren Peter) > (2000-2004) > (2002)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Frost, Britt-Marie, et al. (författare)
  • In vitro activity of the novel cytotoxic agent CHS 828 in childhood acute leukemia
  • 2002
  • Ingår i: Anti-Cancer Drugs. - 0959-4973 .- 1473-5741. ; 13:7, s. 735-742
  • Tidskriftsartikel (refereegranskat)abstract
    • CHS 828, a pyridyl cyanoguanidine, is a new drug candidate now in phase I/II trials, that has shown promising anticancer activity in experimental tumor models and primary cultures of cancer cells from patients. In this study the fluorometric microculture cytotoxicity assay was used for evaluation of CHS 828 in primary cell cultures from children with acute leukemia. The activity of and interaction with the standard drugs, doxorubicin, melphalan, etoposide and cytosine arabinoside (Ara-C), were also assessed. Samples from 65 patients, 42 with acute lymphocytic leukemia (ALL) and 23 with acute myelocytic leukemia (AML) were tested with 72-h continuous drug exposure. There was 50% cell kill at very low CHS 828 concentrations; median IC50 was 0.01 microM in ALL and 0.03 in AML samples (NS) with large interindividual variability in both groups. ALL samples were significantly more sensitive than AML samples to melphalan, doxorubicin and etoposide, but not to Ara-C. In AML samples, combinations between CHS 828 and each of the four standard drugs resulted in significantly lower cell survival than either drug alone. This was also observed in ALL samples, except for Ara-C. Using the additive interaction model, CHS 828 showed a synergistic effect with melphalan in 67%, doxorubicin in 47%, etoposide in 38% and Ara-C in 14% of AML samples. In most ALL samples subadditive effects were found. Further exploration of CHS 828 in childhood leukemia is warranted, especially in AML.
  •  
6.
  •  
7.
  •  
8.
  • Nygren, Jonas, et al. (författare)
  • Glucose flux is normalized by compensatory hyperinsulinaemia in growth hormone-induced insulin resistance in healthy subjects, while skeletal muscle protein synthesis remains unchanged.
  • 2002
  • Ingår i: Clinical Science. - London, United Kingdom : Portland Press. - 0143-5221 .- 1470-8736. ; 102:4, s. 457-64
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this present investigation was to study the relationship between the reduction in insulin sensitivity accompanying 5 days of treatment with growth hormone (GH; 0.05 mg.24 h(-1).kg(-1)) and intracellular substrate oxidation rates in six healthy subjects, while maintaining glucose flux by a constant glucose infusion and adjusting insulin infusion rates to achieve normoglycaemia (feedback clamp). Protein synthesis rates in skeletal muscle (flooding dose of L-[(2)H(5)]phenylalanine) were determined under these conditions. We also compared changes in insulin sensitivity after GH treatment with simultaneous changes in energy requirements, protein synthesis rates, nitrogen balance, 3-methylhistidine excretion in urine, body composition and the hormonal milieu. After GH treatment, 70% more insulin was required to maintain normoglycaemia (P<0.01). The ratio between glucose infusion rate and serum insulin levels decreased by 34% at the two levels of glucose infusion tested (P<0.05). Basal levels of C-peptide, insulin-like growth factor (IGF)-I and IGF-binding protein-3 increased almost 2-fold, while levels of glucose, insulin, glucagon, GH and IGF-binding protein-1 remained unchanged. Non-esterified fatty acid levels decreased (P<0.05). In addition, 24 h urinary nitrogen excretion decreased by 26% (P<0.01) after GH treatment, while skeletal muscle protein synthesis and 3-methylhistidine excretion in urine remained unchanged. Energy expenditure increased by 5% (P<0.05) after treatment, whereas fat and carbohydrate oxidation were unaltered. In conclusion, when glucose flux was normalized by compensatory hyperinsulinaemia under conditions of GH-induced insulin resistance, intracellular rates of oxidation of glucose and fat remained unchanged. The nitrogen retention accompanying GH treatment seems to be due largely to improved nitrogen balance in non-muscle tissue.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy