SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Persson Magnus V. 1983) srt2:(2018)"

Sökning: WFRF:(Persson Magnus V. 1983) > (2018)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jorgensen, J. K., et al. (författare)
  • The ALMA-PILS survey: isotopic composition of oxygen-containing complex organic molecules toward IRAS 16293-2422B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 620
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the D- and C-13-bearing variants, are sensitive to the densities, temperatures and timescales characteristic of the environment in which they form, and can therefore provide important constraints on the formation routes and conditions of individual species. Aims. The aim of this paper is to systematically survey the deuteration and the C-13 content of a variety of oxygen-bearing complex organic molecules on solar system scales toward the "B component" of the protostellar binary IRAS16293-2422. Methods. We have used the data from an unbiased molecular line survey of the protostellar binary IRAS16293-2422 between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The data probe scales of 60 AU (diameter) where most of the organic molecules are expected to have sublimated off dust grains and be present in the gas phase. The deuterated and C-13 isotopic species of ketene, acetaldehyde and formic acid, as well as deuterated ethanol, are detected unambiguously for the first time in the interstellar medium. These species are analysed together with the C-13 isotopic species of ethanol, dimethyl ether and methyl formate along with mono-deuterated methanol, dimethyl ether and methyl formate. Results. The complex organic molecules can be divided into two groups with one group, the simpler species, showing a D/H ratio of approximate to 2% and the other, the more complex species, D/H ratios of 4-8%. This division may reflect the formation time of each species in the ices before or during warm-up/infall of material through the protostellar envelope. No significant differences are seen in the deuteration of different functional groups for individual species, possibly a result of the short timescale for infall through the innermost warm regions where exchange reactions between different species may be taking place. The species show differences in excitation temperatures between 125 and 300 K. This likely reflects the binding energies of the individual species, in good agreement with what has previously been found for high-mass sources. For dimethyl ether, the C-12/C-13 ratio is found to be lower by up to a factor of 2 compared to typical ISM values similar to what has previously been inferred for glycolaldehyde. Tentative identifications suggest that the same may apply for C-13 isotopologues of methyl formate and ethanol. If confirmed, this may be a clue to their formation at the late prestellar or early protostellar phases with an enhancement of the available C-13 relative to C-12 related to small differences in binding energies for CO isotopologues or the impact of FUV irradiation by the central protostar. Conclusions. The results point to the importance of ice surface chemistry for the formation of these complex organic molecules at different stages in the evolution of embedded protostars and demonstrate the use of accurate isotope measurements for understanding the history of individual species.
  •  
2.
  • Persson, Magnus V., 1983, et al. (författare)
  • The ALMA-PILS Survey: Formaldehyde deuteration in warm gas on small scales toward IRAS 16293-2422 B
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 610
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. The enhanced degrees of deuterium fractionation observed in envelopes around protostars demonstrate the importance of chemistry at low temperatures, relevant in pre- and protostellar cores. Formaldehyde is an important species in the formation of methanol and more complex molecules. Aims. Here, we aim to present the first study of formaldehyde deuteration on small scales around the prototypical low-mass protostar IRAS 16293-2422 using high spatial and spectral resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations. We determine the excitation temperature, abundances and fractionation level of several formaldehyde isotopologues, including its deuterated forms. Methods. Excitation temperature and column densities of formaldehyde in the gas close to one of the components of the binary were constrained through modeling of optically thin lines assuming local thermodynamical equilibrium. The abundance ratios were compared to results from previous single dish observations, astrochemical models and local ISM values. Results. Numerous isotopologues of formaldehyde are detected, among them H 2 C 17 O, and D 2 13 CO for the first time in the ISM. The large range of upper energy levels covered by the HDCO lines help constrain the excitation temperature to 106 ± 13 K. Using the derived column densities, formaldehyde shows a deuterium fractionation of HDCO/H 2 CO = 6.5 ± 1%, D 2 CO/HDCO = 12.8 -4.1 +3.3 %, and D 2 CO/H 2 CO = 0.6(4) ± 0.1%. The isotopic ratios derived are 16 O/ 18 O = 805 -79 +43 , 18 O/ 17 O = 3.2 -0.3 +0.2 , and 12 C/ 13 C = 56 -11 +8 . Conclusions. The HDCO/H 2 CO ratio is lower than that found in previous studies, highlighting the uncertainties involved in interpreting single dish observations of the inner warm regions. The D 2 CO/HDCO ratio is only slightly larger than the HDCO/H 2 CO ratio. This is consistent with formaldehyde forming in the ice as soon as CO has frozen onto the grains, with most of the deuteration happening toward the end of the prestellar core phase. A comparison with available time-dependent chemical models indicates that the source is in the early Class 0 stage.
  •  
3.
  • Taquet, V., et al. (författare)
  • Linking interstellar and cometary O2: A deep search for 16O18O in the solar-Type protostar IRAS 16293b-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 618
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent measurements carried out at comet 67P/Churyumov-Gerasimenko (67P) with the Rosetta probe revealed that molecular oxygen, O2, is the fourth most abundant molecule in comets. Models show that O2 is likely of primordial nature, coming from the interstellar cloud from which our solar system was formed. However, gaseous O2 is an elusive molecule in the interstellar medium with only one detection towards quiescent molecular clouds, in the ρ Oph A core. We perform a deep search for molecular oxygen, through the 21-01 rotational transition at 234 GHz of its 16O18O isotopologue, towards the warm compact gas surrounding the nearby Class 0 protostar IRAS 16293-2422 B with the ALMA interferometer. We also look for the chemical daughters of O2, HO2, and H2O2. Unfortunately, the H2O2 rotational transition is dominated by ethylene oxide c-C2H4O while HO2 is not detected. The targeted 16O18O transition is surrounded by two brighter transitions at ± 1 km s-1 relative to the expected 16O18O transition frequency. After subtraction of these two transitions, residual emission at a 3σ level remains, but with a velocity offset of 0.3-0.5 km s-1 relative to the source velocity, rendering the detection "tentative". We derive the O2 column density for two excitation temperatures Tex of 125 and 300 K, as indicated by other molecules, in order to compare the O2 abundance between IRAS 16293 and comet 67P. Assuming that 16O18O is not detected and using methanol CH3OH as a reference species, we obtain a [O2]/[CH3OH] abundance ratio lower than 2-5, depending on the assumed Tex, a three to four times lower abundance than the [O2]/[CH3OH] ratio of 5-15 found in comet 67P. Such a low O2 abundance could be explained by the lower temperature of the dense cloud precursor of IRAS 16293 with respect to the one at the origin of our solar system that prevented efficient formation of O2 in interstellar ices.
  •  
4.
  • Calcutt, H., et al. (författare)
  • The ALMA-PILS survey: complex nitriles towards IRAS 16293-2422
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 616
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Complex organic molecules are readily detected in the inner regions of the gaseous envelopes of forming protostars. Their detection is crucial to understanding the chemical evolution of the Universe and exploring the link between the early stages of star formation and the formation of solar system bodies, where complex organic molecules have been found in abundance. In particular, molecules that contain nitrogen are interesting due to the role nitrogen plays in the development of life and the compact scales such molecules have been found to trace around forming protostars. Aims. The goal of this work is to determine the inventory of one family of nitrogen-bearing organic molecules, complex nitriles (molecules with a -C N functional group) towards two hot corino sources in the low-mass protostellar binary IRAS 16293-2422. This work explores the abundance differences between the two sources, the isotopic ratios, and the spatial extent derived from molecules containing the nitrile functional group. Methods. Using data from the Protostellar Interferometric Line Survey (PILS) obtained with ALMA, we determine abundances and excitation temperatures for the detected nitriles. We also present a new method for determining the spatial structure of sources with high line density and large velocity gradients-Velocity-corrected INtegrated emission (VINE) maps. Results. We detect methyl cyanide (CH3CN) as well as five of its isotopologues, including CHD2CN, which is the first detection in the interstellar medium (ISM). We also detect ethyl cyanide (C2H5CN), vinyl cyanide (C2H3CN), and cyanoacetylene (HC3N). We find that abundances are similar between IRAS 16293A and IRAS 16293B on small scales except for vinyl cyanide which is only detected towards the latter source. This suggests an important difference between the sources either in their evolutionary stage or warm-up timescales. We also detect a spatially double-peaked emission for the first time in molecular emission in the A source, suggesting that this source is showing structure related to a rotating toroid of material. Conclusions. With high-resolution observations, we have been able to show for the first time a number of important similarities and differences in the nitrile chemistry in these objects. These illustrate the utility of nitriles as potential tracers of the physical conditions in star-forming regions.
  •  
5.
  • Coutens, A., et al. (författare)
  • First detection of cyanamide (NH2CN) towards solar-type protostars
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 612
  • Tidskriftsartikel (refereegranskat)abstract
    • Searches for the prebiotically relevant cyanamide (NH 2 CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13 C isotopologs of NH 2 CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide (∼1.7%) is similar to that of formamide (NH 2 CHO), which may suggest that these two molecules share NH 2 as a common precursor. The NH 2 CN/NH 2 CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH 2 CN on grains through the NH 2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH 2 CN with the correct choice of physical parameters.
  •  
6.
  • Drozdovskaya, M. N., et al. (författare)
  • The ALMA-PILS survey: The sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:4, s. 4949-4964
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolutionary past of our Solar system can be pieced together by comparing analogous lowmass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey are used to search for S-bearing molecules in the outer disc-like structure, ~60 au from IRAS 16293-2422 B, and are compared with data on 67P/Churyumov-Gerasimenko (67P/C-G) stemming from the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard Rosetta. Species such as SO 2 , SO, OCS, CS, H 2 CS, H 2 S, and CH 3 SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC 33 S towards this source and a tentative first-time detection of C 36 S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H 2 S in comparison to 67P/C-G; meanwhile, the SO/SO 2 ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH 3 SH/H 2 CS ratio in range of that of our Solar system (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H 2 S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar system may jointly explain the variations between the two low-mass systems.
  •  
7.
  • Furuya, Kenji, et al. (författare)
  • Tracing the atomic nitrogen abundance in star-forming regions with ammonia deuteration
  • 2018
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 476:4, s. 4994-5005
  • Tidskriftsartikel (refereegranskat)abstract
    • Partitioning of elemental nitrogen in star-forming regions is not well constrained. Most nitrogen is expected to be partitioned among atomic nitrogen (N I), molecular nitrogen (N 2 ), and icy N-bearing molecules, such as NH 3 and N 2 . NI is not directly observable in the cold gas. In this paper, we propose an indirect way to constrain the amount of NI in the cold gas of star-forming clouds, via deuteration in ammonia ice, the [ND 2 H/NH 2 D]/[NH 2 D/NH 3 ] ratio. Using gas-ice astrochemical simulations, we show that if atomic nitrogen remains as the primary reservoir of nitrogen during cold ice formation stages, the [ND 2 H/NH 2 D]/[NH 2 D/NH 3 ] ratio is close to the statistical value of 1/3 and lower than unity, whereas if atomic nitrogen is largely converted into N-bearingmolecules, the ratio should be larger than unity. Observability of ammonia isotopologues in the inner hot regions around low-mass protostars, where ammonia ice has sublimated, is also discussed.We conclude that the [ND 2 H/NH 2 D]/[NH 2 D/NH 3 ] ratio can be quantified using a combination of Very Large Array and Atacama Large Millimeter/ submillimeter Array observations with reasonable integration times, at least towards IRAS 16293-2422, where high molecular column densities are expected.
  •  
8.
  • van 't Hoff, Merel L. R., et al. (författare)
  • Imaging the water snowline in a protostellar envelope with (HCO+)-C-13
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 613
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Snowlines are key ingredients for planet formation. Providing observational constraints on the locations of the major snowlines is therefore crucial for fully connecting planet compositions to their formation mechanism. Unfortunately, the most important snowline, that of water, is very difficult to observe directly in protoplanetary disks because of the close proximity of this snowline to the central star. Aims. Based on chemical considerations, HCO+ is predicted to be a good chemical tracer of the water snowline because it is particularly abundant in dense clouds when water is frozen out. This work aims to map the optically thin isotopolog (HCO+)-C-13 toward the envelope of the low-mass protostar NGC1333-IRAS2A, where the snowline is at a greater distance from the star than in disks. Comparison with previous observations of (H2O)-O-18 show whether (HCO+)-C-13 is indeed a good tracer of the water snwline. Methods. NGC1333-IRAS2A was observed using the NOrthern Extended Millimeter Array (NOEMA) at similar to 0:0.9 resolution, targeting the (HCO+)-C-13 J = 3-2 transition at 260.255 GHz. The integrated emission profile was analyzed using 1D radiative transfer modeling of a spherical envelope with a parametrized abundance profile for (HCO+)-C-13. This profile was validated with a full chemical model. Results. The (HCO+)-C-13 emission peaks similar to 2" northeast of the continuum peak, whereas (H2O)-O-18 sh ows compact emission on source. Quantitative modeling shows that a decrease in (HCO+)-C-13 abundance by at least a factor of six is needed in the inner similar to 360 AU to reproduce the observed emission profile. Chemical modeling indeed predicts a steep increase in HCO+ just outside the water snowline; the 50% decrease in gaseous H2O at the snowline is not enough to allow HCO+ to be abundant. This places the water snowline at 225 AU, further away from the star than expected based on the 1D envelope temperature structure for NGC1333-IRAS2A. In contrast, DCO+ observations show that the CO snowline is at the expected location, making an outburst scenario unlikely. Conclusions. The spatial anticorrelation of (HCO+)-C-13 and (H2O)-O-18 emission provide proof of concept that (HCO+)-C-13 can be used as a tracer of the water snowline.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy