SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Prince Jonathan A.) srt2:(2013)"

Sökning: WFRF:(Prince Jonathan A.) > (2013)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Song, Ci, et al. (författare)
  • Genetic Variants from Lipid-Related Pathways and Risk for Incident Myocardial Infarction
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:3, s. e60454-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI). Objectives: We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples. Setting and Subjects: Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142). Results: In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048). Conclusions: rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI.
  •  
2.
  • Broeckling, Corey D., et al. (författare)
  • Assigning precursor-product ion relationships in indiscriminant MS/MS data from non-targeted metabolite profiling studies
  • 2013
  • Ingår i: Metabolomics. - : Springer Science and Business Media LLC. - 1573-3882 .- 1573-3890. ; 9:1, s. 33-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Tandem mass spectrometry using precursor ion selection (MS/MS) is an invaluable tool for structural elucidation of small molecules. In non-targeted metabolite profiling studies, instrument duty cycle limitations and experimental costs have driven efforts towards alternate approaches. Recently, researchers have begun to explore methods for collecting indiscriminant MS/MS (idMS/MS) data in which the fragmentation process does not involve precursor ion isolation. While this approach has many advantages, importantly speed, sensitivity and coverage, confident assignment of precursor-product ion relationships is challenging, which has inhibited broad adoption of the technique. Here, we present an approach that uses open source software to improve the assignment of precursor-product relationships in idMS/MS data by appending a dataset-wide correlational analysis to existing tools. The utility of the approach was demonstrated using a dataset of standard compounds spiked into a malt-barley background, as well as unspiked human serum. The workflow was able to recreate idMS/MS spectra which are highly similar to standard MS/MS spectra of authentic standards, even in the presence of a complex matrix background. The application of this approach has the potential to generate high quality idMS/MS spectra for each detectable molecular feature, which will streamline the identification process for non-targeted metabolite profiling studies.
  •  
3.
  • Hong, Mun-Gwan, et al. (författare)
  • A genome-wide assessment of variability in human serum metabolism
  • 2013
  • Ingår i: Human Mutation. - : Hindawi Limited. - 1059-7794 .- 1098-1004. ; 34:3, s. 515-524
  • Tidskriftsartikel (refereegranskat)abstract
    • The study of the genetic regulation of metabolism in human serum samples can contribute to a better understanding of the intermediate biological steps that lead from polymorphism to disease. Here, we conducted a genome-wide association study (GWAS) to discover metabolic quantitative trait loci (mQTLs) utilizing samples from a study of prostate cancer in Swedish men, consisting of 402 individuals (214 cases and 188 controls) in a discovery set and 489 case-only samples in a replication set. A global nontargeted metabolite profiling approach was utilized resulting in the detection of 6,138 molecular features followed by targeted identification of associated metabolites. Seven replicating loci were identified (PYROXD2, FADS1, PON1, CYP4F2, UGT1A8, ACADL, and LIPC) with associated sequence variants contributing significantly to trait variance for one or more metabolites (P = 10(-13) -10(-91)). Regional mQTL enrichment analyses implicated two loci that included FADS1 and a novel locus near PDGFC. Biological pathway analysis implicated ACADM, ACADS, ACAD8, ACAD10, ACAD11, and ACOXL, reflecting significant enrichment of genes with acyl-CoA dehydrogenase activity. mQTL SNPs and mQTL-harboring genes were over-represented across GWASs conducted to date, suggesting that these data may have utility in tracing the molecular basis of some complex disease associations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy