SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rankinen T) srt2:(2010-2014)"

Sökning: WFRF:(Rankinen T) > (2010-2014)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Keller, P, et al. (författare)
  • A transcriptional map of the impact of endurance exercise training on skeletal muscle phenotype
  • 2011
  • Ingår i: Journal of applied physiology (Bethesda, Md. : 1985). - : American Physiological Society. - 1522-1601 .- 8750-7587. ; 110:1, s. 46-59
  • Tidskriftsartikel (refereegranskat)abstract
    • The molecular pathways that are activated and contribute to physiological remodeling of skeletal muscle in response to endurance exercise have not been fully characterized. We previously reported that ∼800 gene transcripts are regulated following 6 wk of supervised endurance training in young sedentary males, referred to as the training-responsive transcriptome (TRT) (Timmons JA et al. J Appl Physiol 108: 1487–1496, 2010). Here we utilized this database together with data on biological variation in muscle adaptation to aerobic endurance training in both humans and a novel out-bred rodent model to study the potential regulatory molecules that coordinate this complex network of genes. We identified three DNA sequences representing RUNX1, SOX9, and PAX3 transcription factor binding sites as overrepresented in the TRT. In turn, miRNA profiling indicated that several miRNAs targeting RUNX1, SOX9, and PAX3 were downregulated by endurance training. The TRT was then examined by contrasting subjects who demonstrated the least vs. the greatest improvement in aerobic capacity (low vs. high responders), and at least 100 of the 800 TRT genes were differentially regulated, thus suggesting regulation of these genes may be important for improving aerobic capacity. In high responders, proangiogenic and tissue developmental networks emerged as key candidates for coordinating tissue aerobic adaptation. Beyond RNA-level validation there were several DNA variants that associated with maximal aerobic capacity (V̇o2max) trainability in the HERITAGE Family Study but these did not pass conservative Bonferroni adjustment. In addition, in a rat model selected across 10 generations for high aerobic training responsiveness, we found that both the TRT and a homologous subset of the human high responder genes were regulated to a greater degree in high responder rodent skeletal muscle. This analysis provides a comprehensive map of the transcriptomic features important for aerobic exercise-induced improvements in maximal oxygen consumption.
  •  
4.
  •  
5.
  • Qi, Qibin, et al. (författare)
  • FTO genetic variants, dietary intake and body mass index : insights from 177 330 individuals
  • 2014
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 23:25, s. 6961-6972
  • Tidskriftsartikel (refereegranskat)abstract
    • FTO is the strongest known genetic susceptibility locus for obesity. Experimental studies in animals suggest the potential roles of FTO in regulating food intake. The interactive relation among FTO variants, dietary intake and body mass index (BMI) is complex and results from previous often small-scale studies in humans are highly inconsistent. We performed large-scale analyses based on data from 177 330 adults (154 439 Whites, 5776 African Americans and 17 115 Asians) from 40 studies to examine: (i) the association between the FTO-rs9939609 variant (or a proxy single-nucleotide polymorphism) and total energy and macronutrient intake and (ii) the interaction between the FTO variant and dietary intake on BMI. The minor allele (A-allele) of the FTO-rs9939609 variant was associated with higher BMI in Whites (effect per allele = 0.34 [0.31, 0.37] kg/m(2), P = 1.9 × 10(-105)), and all participants (0.30 [0.30, 0.35] kg/m(2), P = 3.6 × 10(-107)). The BMI-increasing allele of the FTO variant showed a significant association with higher dietary protein intake (effect per allele = 0.08 [0.06, 0.10] %, P = 2.4 × 10(-16)), and relative weak associations with lower total energy intake (-6.4 [-10.1, -2.6] kcal/day, P = 0.001) and lower dietary carbohydrate intake (-0.07 [-0.11, -0.02] %, P = 0.004). The associations with protein (P = 7.5 × 10(-9)) and total energy (P = 0.002) were attenuated but remained significant after adjustment for BMI. We did not find significant interactions between the FTO variant and dietary intake of total energy, protein, carbohydrate or fat on BMI. Our findings suggest a positive association between the BMI-increasing allele of FTO variant and higher dietary protein intake and offer insight into potential link between FTO, dietary protein intake and adiposity.
  •  
6.
  •  
7.
  • Sarzynski, M. A., et al. (författare)
  • Changes in Uric Acid Levels following Bariatric Surgery Are Not Associated with SLC2A9 Variants in the Swedish Obese Subjects Study
  • 2012
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 7:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Context and Objective: Obesity and SLC2A9 genotype are strong determinants of uric acid levels. However, data on SLC2A9 variants and weight loss induced changes in uric acid levels are missing. We examined whether the changes in uric acid levels two- and ten-years after weight loss induced by bariatric surgery were associated with SLC2A9 single nucleotide polymorphisms (SNPs) in the Swedish Obese Subjects study. Methods: SNPs (N = 14) identified by genome-wide association studies and exonic SNPs in the SLC2A9 gene locus were genotyped. Cross-sectional associations were tested before (N = 1806), two (N = 1664) and ten years (N = 1201) after bariatric surgery. Changes in uric acid were compared between baseline and Year 2 (N = 1660) and years 2 and 10 (N = 1172). A multiple testing corrected threshold of P = 0.007 was used for statistical significance. Results: Overall, 11 of the 14 tested SLC2A9 SNPs were significantly associated with cross-sectional uric acid levels at all three time points, with rs13113918 showing the strongest association at each time point (R-2 = 3.725.2%, 3.9 x 10-(22)<= p <= 7.7 x 10(-11)). One SNP (rs737267) showed a significant association (R-2 = 0.60%, P = 0.002) with change in uric acid levels from baseline to Year 2, as common allele homozygotes (C/C, N = 957) showed a larger decrease in uric acid (-61.4 mu mol/L) compared to minor allele carriers (A/X: -51.7 mu mol/L, N = 702). No SNPs were associated with changes in uric acid from years 2 to 10. Conclusions: SNPs in the SLC2A9 locus contribute significantly to uric acid levels in obese individuals, and the associations persist even after considerable weight loss due to bariatric surgery. However, we found little evidence for an interaction between genotype and weight change on the response of uric acid to bariatric surgery over ten years. Thus, the fluctuations in uric acid levels among the surgery group appear to be driven by the weight losses and gains, independent of SLC2A9 genotypes. Citation: Sarzynski MA, Jacobson P, Rankinen T, Carlsson B, Sjostrom L, et al. (2012) Changes in Uric Acid Levels following Bariatric Surgery Are Not Associated with SLC2A9 Variants in the Swedish Obese Subjects Study.
  •  
8.
  •  
9.
  • Sarzynski, MA, et al. (författare)
  • Associations of markers in 11 obesity candidate genes with maximal weight loss and weight regain in the SOS bariatric surgery cases
  • 2011
  • Ingår i: INTERNATIONAL JOURNAL OF OBESITY. - 0307-0565. ; 35:5, s. 676-683
  • Tidskriftsartikel (refereegranskat)abstract
    • Abstract: Purpose: To test whether DNA sequence variation in 11 obesity genes is associated with maximum weight loss and weight regain over 6 years of follow-up in bariatric surgery patients of the Swedish obese subjects (SOS) intervention study. Methods: A total of 1443 subjects were available for analysis (vertical banded gastroplasty: n = 966, banding: n = 293 and gastric bypass: n 184). Single-nucleotide polymorphisms (SNPs) from the following 11 genes were included: ADIPOQ, BDNF, FTO, GNB3, LEP, LEPR, MC4R, NR3C1, PPARG, PPARGC1A and TNF. General linear models were used to analyze associations between the SNPs and maximum weight loss and weight regain. Results: The average maximum weight loss was 33.7 kg (s.d. 13.3; min -95.5 kg, max + 2.0 kg), which was reached 2.2 (s.d. 1.6) years after the surgery. Subjects regained approximately 12 kg (range 0.0-51.4 kg) by year 6. After correcting for multiple testing, the FTO SNP rs16945088 remained significantly associated with maximum weight loss (P = 0.0002), as minor allele carriers lost approximately 3 kg less compared with common allele homozygotes. This association was particularly evident in the banding surgery patients (P < 0.0001), whereas no significant association was found in the gastric bypass subjects. No other SNPs were associated with maximum weight loss. Furthermore, no SNPs were significantly associated with weight regain. Conclusion: The FTO SNP rs16945088 was associated with maximum weight loss after banding surgery. We found no evidence that obesity-risk SNPs in FTO or other obesity candidate genes derived from genome-wide association studies are associated with maximum weight loss or weight regain over 6 years of follow-up in bariatric surgery patients. The potential role of other obesity genes remains to be investigated. International Journal of Obesity (2011) 35, 676-683; doi: 10.1038/ijo.2010.166; published online 24 August 2010
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy