SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ronnblom L) srt2:(2020-2021)"

Search: WFRF:(Ronnblom L) > (2020-2021)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Wiley, MM, et al. (author)
  • FUNCTIONAL EVALUATION OF THE SJOGREN'S SYNDROME AND SYSTEMIC LUPUS ERYTHEMATOSUS DDX6-CXCR5 RISK INTERVAL
  • 2020
  • In: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 89-90
  • Conference paper (other academic/artistic)abstract
    • Sjögren’s Syndrome (SS) and Systemic Lupus Erythematosus (SLE) are distinct chronic, complex autoimmune diseases with shared characteristics such as autoantibodies, heightened interferons, and polyarthritis. SS and SLE genome-wide association studies (GWAS) report strong associations with theDDX6-CXCR5risk interval. DDX6 suppresses interferon stimulated gene expression and CXCR5 regulates T cell functions implicated in autoimmunity.Objectives:To identify functional variants that impact regulation in theDDX6-CXCR5interval.Methods:Fine-mapping was done using ImmunoChip data from 3785 SLE, 1916 SS cases and 6893 population controls of European ancestry that were imputed and tested for SNP-trait association. Bayesian statistics assigned posterior probabilities to SNPs and defined a credible set of risk variants. Bioinformatic analyses further prioritized variants with predicted functionality. Electrophoretic mobility shift assays (EMSAs) and luciferase expression were used to validate predicted SNPs in EBV transformed B (EBV B) cells.Results:While some differences were observed, the overall SS and SLE association signals were similar. SNP-SS rs9736016 nearCXCR5and SNP-SLE rs76409436 nearDDX6were the most significant but did not show evidence of functionality. Bayesian statistics defined credible sets of variants in strong D’ in common between both SS and SLE. Bioinformatics analyses (Haploreg, RegulomeDB, ENCODE data, etc) further refined the credible set and identified 5 common SNPs with strong evidence of functionality in immune cell types: rs4938572, rs4936443, rs57494551, rs7117261 and rs4938573. EMSAs showed a significant increase in protein binding to the risk allele of rs57494551 (p=0.0001), rs7117261 (p=0.0001) and rs4938573 (p=0.0003), but not the others, using nuclear lysates from EBV B cells. Luciferase vectors with a minimal promoter or no promoter were used to test for enhancer or promoter activity, respectively. To this end, the rs57494551 risk allele exhibited a significant increase in enhancer activity (p=0.0001). In contrast, the rs7117261 risk allele decreased enhancer activity (p=0.018). The rs4938573 risk allele decreased enhancer (p=0.043) and promoter (p=0.024) activity. While rs7117261 or rs4938573 were not reported in eQTL databases, GTex data reported rs57494551 as an eQTL that altersDDX6expression in whole blood (p=1.8E-7). Additionally, these functional SNPs have been associated with looping events to several proximal promoters in nearby genes in immune cells.Conclusion:SS and SLE have similar genomic architecture across theDDX6-CXCR5risk interval. Multiple variants in the credible set exhibited allele specific changes in protein binding, as well as modified enhancer activity, promoter activity or both. Ongoing studies will use Cas9 in EBV B cells to determine which other loci are within the local regulatory network.Disclosure of Interests:Mandi M Wiley: None declared, Bhuwan Khatri: None declared, Kandice L Tessneer: None declared, Michelle L Joachims: None declared, Anna M Stolarczyk: None declared, Astrid Rasmussen Speakers bureau: Novartis, ThermoFischer, Simon J. Bowman Consultant of: Astrazeneca, Biogen, BMS, Celgene, Medimmune, MTPharma, Novartis, Ono, UCB, xtlbio, Glapagos, Speakers bureau: Novartis, Lida Radfar: None declared, Roald Omdal: None declared, Marie Wahren-Herlenius: None declared, Blake M Warner: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, Patrick M Gaffney: None declared, Judith A. James Grant/research support from: Progentec Diagnostics, Inc, Consultant of: Abbvie, Novartis, Jannsen, Lars Ronnblom Grant/research support from: AZ, Speakers bureau: AZ, R Hal Scofield Grant/research support from: Pfizer, Xavier Mariette: None declared, Wan-fai Ng: None declared, Kathy L Sivils: None declared, Gunnel Nordmark: None declared, Betty Tsao: None declared, Christopher Lessard: None declared
  •  
3.
  • Burska, A, et al. (author)
  • TYPE I INTERFERON PATHWAY ASSAYS IN PATIENTS WITH RHEUMATIC AND MUSCULOSKELETAL DISEASES - SYSTEMATIC LITERATURE REVIEW (SLR) AND DEVELOPMENT OF CONSENSUS TERMINOLOGY FROM A EULAR TASKFORCE
  • 2021
  • In: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 80, s. 415-415
  • Conference paper (other academic/artistic)abstract
    • The interferon (IFN) pathway is a complex system with multiple proteins and diverse downstream effects on gene and protein expression. IFNs have been implicated in multiple RMDs. Despite significant potential, IFN assays have not progressed into clinical practice.Objectives:To perform a SLR on IFN assays in RMDs and propose a consensus terminology.Methods:OvidMedline, Embase and Web of Science were searched for reports of IFN and RMDs up to October 2019. Information about the properties of assays measuring type I IFN and measures of truth were extracted and summarised. Terminology was agreed through an interactive consensus process with reference to the existing evidence.Results:10037 abstracts were identified. 275 fulfilled eligibility criteria, and were used for data extraction. Some used more than one technique to measure IFN-I pathway activation. Hence, 275 papers generated data on 393 methods. There was great heterogeneity in the methods used and presentation of results. IFN-I pathway activation was measured using: qPCR (n=121), immunoassays (n=101), microarray (n=69), reporter cell assay (n=38), DNA methylation (n=14), flow cytometry (n=14), cytopathic effect assay (n=11), RNA sequencing (n=9), Plaque reduction assay (n=8), Nanostring (n=5), bisulphite sequencing (n=3). All papers fulfilled Face Validity. Due to lack of gold standard for IFN-I pathway activation, evidence of criterion validity was variable. Concurrent validity was presented for n=150 assays. The terminology used to describe aspects of type I IFN pathway activation was not consistent, so a consensus terminology for IFN research (Table 1) was proposed by the taskforce.Table 1.Consensus terminologyTermAbbreviationDefinitionInterferonIFNProteins with anti-viral activity; IFNs are mediators of an anti-viral response. They belong to the Type I, Type II and Type III IFN families.Type I interferonIFN-IThe IFNs alpha, beta, omega, kappa, epsilon, secreted by any nucleated cell, and binding to the IFNAR, which is expressed on any nucleated cell.Type II interferonIFN-IIIFN gamma, mostly secreted by T cells, binding to the IFNGR, which is expressed on most leucocytes.Type III interferonIFN-IIIIFN lambda, which are structurally more similar to IL-10 but share downstream signalling and gene expression with IFN-I.Interferon-stimulated genesISGsGenes whose expression is known to be upregulated by any kind of IFN. Individual ISGs may not exclusively represent Type I IFN pathway activation.Type I Interferon pathway activationAny evidence for function of the components of the Type I IFN pathway. This includes: secretion of a Type I IFN protein, binding to the IFNAR, initiation of JAK/STAT signalling pathways, expression of IFN-stimulated genes, expression of IFN-stimulated proteins.Type I interferon pathway assayAn assay measuring one or more components of the Type I IFN pathway at a molecular or functional level.Interferon stimulated gene expression signatureA qualitative description of coordinated expression of a set of ISGs that is indicative of Type I IFN pathway activation.Interferon stimulated gene expression scoreA quantitative variable derived from expression of a defined set of ISGs that is indicative of Type I IFN pathway activation.Interferon stimulated protein scoreA variable derived from expression of a defined set of soluble biomarkers known to be upregulated by IFN, although not specific for Type I IFN.InterferonopathyMonogenic diseases in which there is constitutive Type I IFN pathway activation with a causal role in pathology. The clinical picture may resemble rheumatic musculoskeletal diseases. However, most diseases with IFN pathway activation are not Interferonopathies.Conclusion:Diverse methods have been reported as IFN assays and these differ in what elements of type IFN-I pathway activation they measure. The taskforce consensus terminology on type I IFN reporting should be considered for research and clinical applications.Disclosure of Interests:Agata Burska: None declared, Javier Rodriguez Carrio: None declared, Philip G Conaghan: None declared, Willem A Dik: None declared, Robert Biesen: None declared, Maija-leena Eloranta: None declared, Giulio Cavalli: None declared, Marianne Visser: None declared, Dimitrios Boumpas: None declared, George Bertsias: None declared, Marie Wahren-Herlenius: None declared, Jan Rehwinkel: None declared, Marie-Louise Frémond: None declared, Mary K. Crow Consultant of: AstraZeneca, Bristol Meyers Squibb, Lilly, Shannon Pharmaceuticals, Grant/research support from: Gilead, Lars Ronnblom Consultant of: AstraZeneca, Edward Vital Speakers bureau: GSK, Consultant of: AURINIA, SANDOZ, GSK, AstraZeneca, Roche, Modus, Grant/research support from: AstraZeneca, Marjan Versnel: None declared
  •  
4.
  •  
5.
  •  
6.
  • Khatri, B, et al. (author)
  • GENOME-WIDE ASSOCIATION STUDY OF SJOGREN'S SYNDROME IDENTIFIES TEN NEW RISK LOCI
  • 2020
  • In: ANNALS OF THE RHEUMATIC DISEASES. - : BMJ. - 0003-4967 .- 1468-2060. ; 79, s. 30-31
  • Conference paper (other academic/artistic)abstract
    • Sjögren’s syndrome (SS) is a complex autoimmune disease with exocrine gland dysfunction leading to substantial morbidity. There are 10 published genetic susceptibility loci.Objectives:Our genome-wide association study (GWAS) aimed to identify additional risk loci of genome-wide significance (GWS; p<5E-08) in European-derived primary SS.Methods:A total of 3232 cases and 17481 controls genotyped on GWAS arrays and 619 cases and 6171 controls genotyped on ImmunoChip (IC) arrays were imputed after quality control. Logistic regression was calculated adjusting for ancestry using the first 4 principal components to identify SS-associated SNPs. GWAS and IC results were meta-analyzed using weighted Z-scores. Bayesian statistics were used to assign posterior probabilities and define credible SNP sets for each locus. Bioinformatic analyses were used to predict functionality.Results:Seven novel loci exceeded GWS in the GWAS analysis:NAB1,MIR146A-PTTG1,XKR6,MAPT-CRHR1,RPTOR-CHMP6-BAIAP2,TYK2andSYNGR1. Meta-analysis with IC data identified three more novel loci exceeding GWS:CD247,PRDM1-ATG5andTNFAIP3. Several additional loci with suggestive association (p<1E-05) were also identified:ADAMTSL2,CGNL1andPHRF1.Several identified loci have reported functional implications in immune regulation and autoimmune disease. In lupus, rs2431697 correlated with rs2431098, which was shown to alterMIR146Aexpression, resulting in type I interferon pathway imbalance. Similarly,TYK2risk association reportedly drives interferon, IL10 and RET signaling pathways.PRDM1encodes Blimp-1, a master regulator of immune cell differentiation.CD247encodes the zeta subunit of the T cell receptor complex.XKR6is implicated in apoptotic cell ingestion.ATG5is also involved in apoptosis, as well as autophagy and antigen presentation.Additional bioinformatics analyses (Haploreg, Regulome DB, ENCODE, etc.) revealed immune-relevant functional implications for each risk locus. The SS-associated credible set included variants downstream ofTNFAIP3in a region reported to abolish looping between an enhancer and theTNFAIP3promoter in lupus and a coding variant that has been shown to alter NF-kB activity and neutrophil extra-cellular traps. The rs2293765 in the 5’ UTR ofNAB1showed evidence of enhancer/promoter activities. The rs2069235 in theSYNGR1locus showed enhancer and transcription start site activities in B and T cells. The rs7210219 in theMAPT-CRHR1locus showed enhancer/promotor activities in various tissues.Conclusion:We have identified ten novel genetic susceptibility loci associated with SS pathology. Our finding increases the current number of GWS regions in SS patients of European origin, from 10 to 20. Future work is needed to identify and characterize the functional variants in each region.Disclosure of Interests:Bhuwan Khatri: None declared, Tove Ragna Reksten: None declared, Kandice L Tessneer: None declared, Astrid Rasmussen Speakers bureau: Novartis, ThermoFischer, R Hal Scofield Grant/research support from: Pfizer, Simon J. Bowman Consultant of: Astrazeneca, Biogen, BMS, Celgene, Medimmune, MTPharma, Novartis, Ono, UCB, xtlbio, Glapagos, Speakers bureau: Novartis, Joel Guthridge Grant/research support from: Xencor, Bristol Myers Squibb, DXterity, Judith A. James Grant/research support from: Progentec Diagnostics, Inc, Consultant of: Abbvie, Novartis, Jannsen, Lars Ronnblom Grant/research support from: AZ, Speakers bureau: AZ, Blake M Warner: None declared, Xavier Mariette: None declared, Roald Omdal: None declared, Javier Martin Ibanez: None declared, Maria Teruel: None declared, Janicke Liaaen Jensen: None declared, Lara A Aqrawi: None declared, Øyvind Palm: None declared, Marie Wahren-Herlenius: None declared, Torsten Witte: None declared, Roland Jonsson: None declared, Maureen Rischmueller: None declared, A Darise Farris Speakers bureau: Biogen, Marta Alarcon-Riquelme: None declared, Wan-fai Ng: None declared, Kathy L Sivils: None declared, Gunnel Nordmark: None declared, Christopher Lessard: None declared
  •  
7.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view