SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Roquet Fabien) srt2:(2018)"

Sökning: WFRF:(Roquet Fabien) > (2018)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ferreira, David, et al. (författare)
  • Atlantic-Pacific Asymmetry in Deep Water Formation
  • 2018
  • Ingår i: Annual Review of Earth and Planetary Science. - : Annual Reviews. - 0084-6597 .- 1545-4495. ; 46, s. 327-352
  • Forskningsöversikt (refereegranskat)abstract
    • While the Atlantic Ocean is ventilated by high-latitude deep water formation and exhibits a pole-to-pole overturning circulation, the Pacific Ocean does not. This asymmetric global overturning pattern has persisted for the past 2-3 million years, with evidence for different ventilation modes in the deeper past. In the current climate, the Atlantic-Pacific asymmetry occurs because the Atlantic is more saline, enabling deep convection. To what extent the salinity contrast between the two basins is dominated by atmospheric processes (larger net evaporation over the Atlantic) or oceanic processes (salinity transport into the Atlantic) remains an outstanding question. Numerical simulations have provided support for both mechanisms; observations of the present climate support a strong role for atmospheric processes as well as some modulation by oceanic processes. A major avenue for future work is the quantification of the various processes at play to identify which mechanisms are primary in different climate states.
  •  
2.
  • Fransner, Filippa, et al. (författare)
  • Non-Redfieldian Dynamics Explain Seasonal pCO2 Drawdown in the Gulf of Bothnia
  • 2018
  • Ingår i: Journal of Geophysical Research - Oceans. - 2169-9275 .- 2169-9291. ; 123:1, s. 166-188
  • Tidskriftsartikel (refereegranskat)abstract
    • High inputs of nutrients and organic matter make coastal seas places of intense air-sea CO2 exchange. Due to their complexity, the role of coastal seas in the global air-sea CO2 exchange is, however, still uncertain. Here, we investigate the role of phytoplankton stoichiometric flexibility and extracellular DOC production for the seasonal nutrient and CO2 partial pressure (pCO2) dynamics in the Gulf of Bothnia, Northern Baltic Sea. A 3-D ocean biogeochemical-physical model with variable phytoplankton stoichiometry is for the first time implemented in the area and validated against observations. By simulating non-Redfieldian internal phytoplankton stoichiometry, and a relatively large production of extracellular dissolved organic carbon (DOC), the model adequately reproduces observed seasonal cycles in macronutrients and pCO2. The uptake of atmospheric CO2 is underestimated by 50% if instead using the Redfield ratio to determine the carbon assimilation, as in other Baltic Sea models currently in use. The model further suggests, based on the observed drawdown of pCO2, that observational estimates of organic carbon production in the Gulf of Bothnia, derived with the method, may be heavily underestimated. We conclude that stoichiometric variability and uncoupling of carbon and nutrient assimilation have to be considered in order to better understand the carbon cycle in coastal seas.
  •  
3.
  • Mallett, H. K. W., et al. (författare)
  • Variation in the Distribution and Properties of Circumpolar Deep Water in the Eastern Amundsen Sea, on Seasonal Timescales, Using Seal-Borne Tags
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276. ; 45:10, s. 4982-4990
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Amundsen Sea, warm saline Circumpolar Deep Water (CDW) crosses the continental shelf toward the vulnerable West Antarctic ice shelves, contributing to their basal melting. Due to lack of observations, little is known about the spatial and temporal variability of CDW, particularly seasonally. A new data set of 6,704 seal tag temperature and salinity profiles in the easternmost trough between February and December 2014 reveals a CDW layer on average 49dbar thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen at moorings in the western trough. This layer contains more heat in winter, but on the 27.76 kg/m(3) density surface CDW is 0.32 degrees C warmer in summer than in winter, across the northeastern Amundsen Sea, which may indicate that wintertime shoaling offshelf changes CDW properties onshelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, likely by gyre circulation. Plain Language Summary In the Amundsen Sea, Antarctica, warm salty water crosses the continental shelf from the deep open ocean, toward the vulnerable West Antarctic ice shelves, bringing heat to help melt them from underneath. Due to lack of observations, little is known about how this flow of warm water varies in space and time, particularly seasonally. Between February and December 2014, in a trough in the eastern Amundsen Sea, 6,704 profiles were collected by sensors attached to seals, measuring temperature and salinity as the seals return from dives up to 1,200m deep. These data showed that this warm (similar to 1 degrees C) deep layer is on average similar to 50m thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen within a trough in the western Amundsen Sea. This warm layer contains more heat in winter but on a surface of constant density is 0.32 degrees C warmer in summer than in winter, across the northeastern Amundsen Sea. This may indicate that in winter the deep waters offshelf rise, allowing different water onto the continental shelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, probably because here the water circulates and mixes.
  •  
4.
  • Mallett, Helen K. W., et al. (författare)
  • Variation in the Distribution and Properties of Circumpolar Deep Water in the Eastern Amundsen Sea, on Seasonal Timescales, Using Seal-Borne Tags
  • 2018
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:10, s. 4982-4990
  • Tidskriftsartikel (refereegranskat)abstract
    • In the Amundsen Sea, warm saline Circumpolar Deep Water (CDW) crosses the continental shelf toward the vulnerable West Antarctic ice shelves, contributing to their basal melting. Due to lack of observations, little is known about the spatial and temporal variability of CDW, particularly seasonally. A new data set of 6,704 seal tag temperature and salinity profiles in the easternmost trough between February and December 2014 reveals a CDW layer on average 49dbar thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen at moorings in the western trough. This layer contains more heat in winter, but on the 27.76 kg/m(3) density surface CDW is 0.32 degrees C warmer in summer than in winter, across the northeastern Amundsen Sea, which may indicate that wintertime shoaling offshelf changes CDW properties onshelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, likely by gyre circulation. Plain Language Summary In the Amundsen Sea, Antarctica, warm salty water crosses the continental shelf from the deep open ocean, toward the vulnerable West Antarctic ice shelves, bringing heat to help melt them from underneath. Due to lack of observations, little is known about how this flow of warm water varies in space and time, particularly seasonally. Between February and December 2014, in a trough in the eastern Amundsen Sea, 6,704 profiles were collected by sensors attached to seals, measuring temperature and salinity as the seals return from dives up to 1,200m deep. These data showed that this warm (similar to 1 degrees C) deep layer is on average similar to 50m thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen within a trough in the western Amundsen Sea. This warm layer contains more heat in winter but on a surface of constant density is 0.32 degrees C warmer in summer than in winter, across the northeastern Amundsen Sea. This may indicate that in winter the deep waters offshelf rise, allowing different water onto the continental shelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, probably because here the water circulates and mixes.
  •  
5.
  • Mensah, Vigan, et al. (författare)
  • A Correction for the Thermal Mass-Induced Errors of CTD Tags Mounted on Marine Mammals
  • 2018
  • Ingår i: Journal of Atmospheric and Oceanic Technology. - 0739-0572 .- 1520-0426. ; 35:6, s. 1237-1252
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of thermal mass on the salinity estimate from conductivity-temperature-depth (CTD) tags sensor mounted on marine mammals is documented, and a correction scheme is proposed to mitigate its impact. The algorithm developed here allows for a direct correction of the salinity data, rather than a correction of the sample's conductivity and temperature. The amplitude of the thermal mass-induced error on salinity and its correction are evaluated via comparison between data from CTD tags and from Sea-Bird Scientific CTD used as a reference. Thermal mass error on salinity appears to be generally O(10(-2)) g kg(-1), it may reach O(10(-1)) g kg(-1), and it tends to increase together with the magnitude of the cumulated temperature gradient (T-HP) within the water column. The correction we propose yields an error decrease of up to similar to 60% if correction coefficients specific to a certain tag or environment are calculated, and up to 50% if a default value for the coefficients is provided. The correction with the default coefficients was also evaluated using over 22 000 in situ dive data from five tags deployed in the Southern Ocean and is found to yield significant and systematic improvements on the salinity data, including for profiles whose T-HP was weak and the error small. The correction proposed here yields substantial improvements in the density estimates, although a thermal mass-induced error in temperature measurements exists for very large T-HP and has yet to be corrected.
  •  
6.
  • Pauthenet, E., et al. (författare)
  • Seasonal Meandering of the Polar Front Upstream of the Kerguelen Plateau
  • 2018
  • Ingår i: Geophysical Research Letters. - : American Geophysical Union (AGU). - 0094-8276 .- 1944-8007. ; 45:18, s. 9774-9781
  • Tidskriftsartikel (refereegranskat)abstract
    • The location of the Antarctic Polar Front (PF) is mapped in the Southern Indian Ocean by decomposing the shape of temperature and salinity profiles into vertical modes using a functional Principal Component Analysis. We define the PF as the northernmost minimum of temperature at the subsurface and represent it as a linear combination of the first three modes. This method is applied on an ocean reanalysis data set and on in situ observations, revealing a seasonal variability of the PF latitudinal position that is most pronounced between the Conrad Rise and the Kerguelen Plateau. This shift coincides with variations in the transport across the Northern Kerguelen Plateau. We suggest that seasonal changes of the upper stratification may drive the observed variability of the PF, with potentially large implications for the pathways and residence time of water masses over the plateau and the phytoplankton bloom extending southeast of the Kerguelen Islands. Plain Language Summary The Antarctic Polar Front (PF) is a water mass boundary that flows around Antarctica between approximately 48 degrees S and 56 degrees S in the Southern Indian Ocean. The position of the PF in space and time is important to understand the oceanic circulation, the heat and salt exchanges, and also marine ecosystems. In the Indian sector the PF has to cross the Kerguelen Plateau, a major bottom topography feature. The present study develops and then applies a novel method for mapping the PF taking into account the whole hydrographic structure in the upper 300 m of the ocean. We are able to map the PF position and find that it presents large seasonal variations that are more intense just west of the Kerguelen Plateau. Between the Conrad Rise and the Kerguelen Plateau, the PF is essentially zonally orientated in September and found farther south by up to 4 degrees latitude in March. Shifts in the PF position are shown to correlate with a seasonal variation in volume transport between Kerguelen and Heard Islands. We discuss how these seasonal variations in circulation pathways could have an impact on the local marine ecosystems.
  •  
7.
  • Pauthenet, Etienne, 1991-, et al. (författare)
  • Seasonal Meandering of the Polar Front Upstream of the Kerguelen Plateau
  • 2018
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 45:18, s. 9774-9781
  • Tidskriftsartikel (refereegranskat)abstract
    • The location of the Antarctic Polar Front (PF) is mapped in the Southern Indian Ocean bydecomposing the shape of temperature and salinity profiles into vertical modes using a functional PrincipalComponent Analysis. We define the PF as the northernmost minimum of temperature at the subsurface andrepresent it as a linear combination of the first three modes. This method is applied on an ocean reanalysisdata set and on in situ observations, revealing a seasonal variability of the PF latitudinal position that ismost pronounced between the Conrad Rise and the Kerguelen Plateau. This shift coincides with variationsin the transport across the Northern Kerguelen Plateau. We suggest that seasonal changes of the upperstratification may drive the observed variability of the PF, with potentially large implications for thepathways and residence time of water masses over the plateau and the phytoplankton bloom extendingsoutheast of the Kerguelen Islands.
  •  
8.
  • Pauthenet, Etienne, 1991- (författare)
  • Unraveling the thermohaline structure of the Southern Ocean using functional data analysis
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The Southern Ocean connects the Indian, Pacific and Atlantic Oceans and provides a direct pathway to exchange mass, heat and salt across the Global Ocean, therefore playing an important role in the global climate system. Due to the complexity of its structure and the general inadequacy of its sampling, both in time and space, it remains a challenge to describe and visualize the three dimensional pattern of its circulation and the associated tracer distribution (temperature, salinity, oxygen or nutrients). This thesis contributes to the understanding of the thermohaline structure of the ocean and especially of the remote Southern Ocean by introducing a novel decomposition method, the Functional Principal Component Analysis applied on vertical profiles of temperature and salinity. To this end, we first normalize hydrographic profiles by using a functional spline representation. Then the statistical method of dimension reduction and feature extraction reveals the main spatial patterns of the temperature and salinity variations. The first two vertical modes contribute to 90% of the combined variance and are related to very robust structures of the Global Ocean. The first mode is mainly controlled by temperature and the second by salinity. In the Southern Ocean, the vertical modes present circumpolar patterns that can be closely related to the stratification regimes that define the circumpolar fronts. Notably the Polar Front is located at the natural boundary between the region controlled by the first (thermal) mode to the north and the second (haline) mode to the south. A mapping of the fundamental zonation is provided with an estimate of the width of the water mass boundaries. As a validation of this method, the Antarctic Polar Front is investigated further in the Indian sector using the same statistical framework. We show that the Polar Front latitudinal position varies seasonally upstream of the Kerguelen Plateau. This meandering is confirmed by hydrographic data gathered by elephant seals equipped with miniaturized sensors. The proposed statistical method provides an objective way to define water mass boundaries and their spatial variability. It offers a useful framework for representing the density structure of the ocean in a reduced-dimension space while maximizing the variance explained. The functional approach also provides a robust way to validate model outputs against observations from any platforms.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy