SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandler Stellan) srt2:(2000-2004)"

Sökning: WFRF:(Sandler Stellan) > (2000-2004)

  • Resultat 1-10 av 28
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Andersson, Annika K., et al. (författare)
  • Cytokine-induced PGE2 formation is reduced from iNOS deficient murine islets
  • 2004
  • Ingår i: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 220:1-2, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Cytokines may be involved in islet destruction during Type 1 diabetes. Exposure to interleukin-1beta (IL-1beta) or IL-1beta plus interferon-gamma (IFN-gamma) of rodent islets induces expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent formation of nitric oxide (NO) and prostaglandin E(2) (PGE(2)) may impair beta-cell function. Using iNOS deficient (iNOS -/-) islets, we have further investigated the relation between NO formation and PGE(2) induction. We found that iNOS -/- islets responded with a reduced PGE(2) formation following IL-1beta or (IL-1beta + IFN-gamma) treatment compared to wild-type (wt) islets, while COX-2 mRNA or protein content were unchanged. By the addition of an NO donor together with IL-1beta, PGE(2) formation could be stimulated from iNOS -/- islets. We conclude that the lowered capacity of PGE(2) formation observed from cytokine exposed iNOS -/- islets is due to a decreased stimulation of PGE(2) formation by the COX-2 enzyme in the absence of NO, rather then differences in expressed COX-2 protein.
  •  
3.
  •  
4.
  • Andersson, Annika K., 1974- (författare)
  • Role of Inducible Nitric Oxide Synthase and Melatonin in Regulation of β-cell Sensitivity to Cytokines
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The mechanisms of β-cell destruction leading to type 1 diabetes are complex and not yet fully understood, but infiltration of the islets of Langerhans by autoreactive immune cells is believed to be important. Activated macrophages and T-cells may then secrete cytokines and free radicals, which could selectively damage the β-cells. Among the cytokines, IL-1β, IFN-γ and TNF-α can induce expression of inducible nitric synthase (iNOS) and cyclooxygenase-2. Subsequent nitric oxide (NO) and prostaglandin E2 (PGE2) formation may impair islet function.In the present study, the ability of melatonin (an antioxidative and immunoregulatory hormone) to protect against β-cell damage induced by streptozotocin (STZ; a diabetogenic and free radical generating substance) or IL-1β exposure was examined. In vitro, melatonin counteracted STZ- but not IL-1β-induced islet suppression, indicating that the protective effect of melatonin is related to interference with free radical generation and DNA damage, rather than NO synthesis. In vivo, non-immune mediated diabetes induced by a single dose of STZ was prevented by melatonin.Furthermore, the effects of proinflammatory cytokines were examined in islets obtained from mice with a targeted deletion of the iNOS gene (iNOS -/- mice) and wild-type controls. The in vitro data obtained show that exposure to IL-1β or (IL-1β + IFN-γ) induce disturbances in the insulin secretory pathway, which were independent of NO or PGE2 production and cell death. Initially after addition, in particular IL-1β seems to be stimulatory for the insulin secretory machinery of iNOS –/- islets, whereas IL-1β acts inhibitory after a prolonged period. Separate experiments suggest that the stimulatory effect of IL-1β involves an increased gene expression of phospholipase D1a/b. In addition, the formation of new insulin molecules appears to be affected, since IL-1β and (IL-1β + IFN-γ) suppressed mRNA expression of both insulin convertase enzymes and insulin itself.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Karlsson, Maria G. E. (författare)
  • The Importance of Cell-Mediated Immunity for the Development of Type 1 Diabetes
  • 2000
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Background Type I (insulin-dependent) diabetes mellitus is an autoimmune disease characterised by infiltration of T-lymphocytes in the islets of Langerhans. In particular, activated Th1-like lymphocytes secreting IFN-γ are suggested to contribute to the inflammatory process and the destruction of ß-cells, whereas Th2-like cells producing IL-4 might even be protective. Environmental factors (diet, viruses, stress etc.) and autoantigens, e.g. Glutamic Acid Decarboxylase (GAD65) and insulin, are suggested to initiate the autoimmune process resulting in type I diabetes.Aim To estimate the immunological balance of Th1/Th2-like lymphocytes, spontaneously and after stimulation with antigens, in high-risk first degree relatives of type 1 diabetic children and in children with newly diagnosed type 1 diabetes.Materials and methods Peripheral blood mononuclear cells (PBMC) from healthy high-risk first-degree relatives (ICA ≥ 20) and newly diagnosed type 1 diabetic children were examined and compared with the response seen in PBMC from healthy controls matched for age and HLA-type (DR3 and/or DR4).Expression of IFN-γ and IL-4 mRNA was determined by RT-PCR or real-time RTPCR and IFN-γ and IL-4 by ELISPOT or ELISA, spontaneously and after stimulation with GAD65 , insulin, bovine serum albumin (BSA), the ABBOS-peptide and ß-lactoglobulin (ßLG). Cytokine expression and secretion was compared to the production of diabetes-associated autoantibodies and to the secretion of endogenous insulin.Results The epitope of GAD65, that mimics the Coxsackie B virus, caused increased IFN-γ mRNA expression in activated Th1-like lymphocytes from newly diagnosed diabetic children. This suggests that GAD65 might be involved in the development of type I diabetes. On the contrary, cow's milk proteins caused increased IFN-γ and IL- 4 mRNA expression in activated Th1- and Th2-like lymphocytes from both diabetic and healthy children. This does not support the hypothesis that cow's milk antigens are important for the development of type 1 diabetes.Overwhelming secretion of IFN-γ was observed in high-risk first-degree relatives of type 1 diabetic children. High-risk individuals still have the ability to change a Th1-like immune deviation into a more protective Th2-like response in the presence of GAD65 and insulin.Conclusions GAD65, but not cow's milk proteins, causes a Th1-like deviation in type 1 diabetic children. High-risk individuals are capable to deviate a Th1-like immune system into a more protective Th2-like response in the presence of autoantigens. These results can be useful in future therapeutic approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 28

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy