SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Scarpini E.) srt2:(2015-2019)"

Search: WFRF:(Scarpini E.) > (2015-2019)

  • Result 1-10 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Bonham, LW, et al. (author)
  • Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia
  • 2019
  • In: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 9:1, s. 10854-
  • Journal article (peer-reviewed)abstract
    • The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA’s relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Heywood, W. E., et al. (author)
  • Identification of novel CSF biomarkers for neurodegeneration and their validation by a high-throughput multiplexed targeted proteomic assay
  • 2015
  • In: Molecular Neurodegeneration. - : Springer Science and Business Media LLC. - 1750-1326. ; 10
  • Journal article (peer-reviewed)abstract
    • Background: Currently there are no effective treatments for many neurodegenerative diseases. Reliable biomarkers for identifying and stratifying these diseases will be important in the development of future novel therapies. Lewy Body Dementia (LBD) is considered an under diagnosed form of dementia for which markers are needed to discriminate LBD from other forms of dementia such as Alzheimer's Disease (AD). This work describes a Label-Free proteomic profiling analysis of cerebral spinal fluid (CSF) from non-neurodegenerative controls and patients with LBD. Using this technology we identified several potential novel markers for LBD. These were then combined with other biomarkers from previously published studies, to create a 10 min multiplexed targeted and translational MRM-LC-MS/MS assay. This test was used to validate our new assay in a larger cohort of samples including controls and the other neurodegenerative conditions of Alzheimer's and Parkinson's disease (PD). Results: Thirty eight proteins showed significantly (p < 0.05) altered expression in LBD CSF by proteomic profiling. The targeted MRM-LC-MS/MS assay revealed 4 proteins that were specific for the identification of AD from LBD: ectonucleotide pyrophosphatase/phosphodiesterase 2 (p < 0.0001), lysosome-associated membrane protein 1 (p < 0.0001), pro-orexin (p < 0.0017) and transthyretin (p < 0.0001). Nineteen proteins were elevated significantly in both AD and LBD versus the control group of which 4 proteins are novel (malate dehydrogenase 1, serum amyloid A4, GM2-activator protein, and prosaposin). Protein-DJ1 was only elevated significantly in the PD group and not in either LBD or AD samples. Correlations with Alzheimer-associated amyloid beta-42 levels, determined by ELISA, were observed for transthyretin, GM2 activator protein and IGF2 in the AD disease group (r(2) >= 0.39, p <= 0.012). Cystatin C, ubiquitin and osteopontin showed a strong significant linear relationship (r(2) >= 0.4, p <= 0.03) with phosphorylated-tau levels in all groups, whilst malate dehydrogenase and apolipoprotein E demonstrated a linear relationship with phosphorylated-tau and total-tau levels in only AD and LBD disease groups. Conclusions: Using proteomics we have identified several potential and novel markers of neurodegeneration and subsequently validated them using a rapid, multiplexed mass spectral test. This targeted proteomic platform can measure common markers of neurodegeneration that correlate with existing diagnostic makers as well as some that have potential to show changes between AD from LBD.
  •  
9.
  • Kuhle, J., et al. (author)
  • Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study
  • 2015
  • In: Multiple Sclerosis Journal. - : SAGE Publications. - 1352-4585 .- 1477-0970. ; 21:8, s. 1013-1024
  • Journal article (peer-reviewed)abstract
    • Background and objective: We explored which clinical and biochemical variables predict conversion from clinically isolated syndrome (CIS) to clinically definite multiple sclerosis (CDMS) in a large international cohort. Methods: Thirty-three centres provided serum samples from 1047 CIS cases with at least two years' follow-up. Age, sex, clinical presentation, T2-hyperintense lesions, cerebrospinal fluid (CSF) oligoclonal bands (OCBs), CSF IgG index, CSF cell count, serum 25-hydroxyvitamin D3 (25-OH-D), cotinine and IgG titres against Epstein-Barr nuclear antigen 1 (EBNA-1) and cytomegalovirus were tested for association with risk of CDMS. Results: At median follow-up of 4.31 years, 623 CIS cases converted to CDMS. Predictors of conversion in multivariable analyses were OCB (HR = 2.18, 95% CI = 1.71-2.77, p < 0.001), number of T2 lesions (two to nine lesions vs 0/1 lesions: HR = 1.97, 95% CI = 1.52-2.55, p < 0.001; >9 lesions vs 0/1 lesions: HR = 2.74, 95% CI = 2.04-3.68, p < 0.001) and age at CIS (HR per year inversely increase = 0.98, 95% CI = 0.98-0.99, p < 0.001). Lower 25-OH-D levels were associated with CDMS in univariable analysis, but this was attenuated in the multivariable model. OCB positivity was associated with higher EBNA-1 IgG titres. Conclusions: We validated MRI lesion load, OCB and age at CIS as the strongest independent predictors of conversion to CDMS in this multicentre setting. A role for vitamin D is suggested but requires further investigation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 29

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view