SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schneider Glenn) srt2:(2020-2021)"

Sökning: WFRF:(Schneider Glenn) > (2020-2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Fazey, Ioan, et al. (författare)
  • Transforming knowledge systems for life on Earth : Visions of future systems and how to get there
  • 2020
  • Ingår i: Energy Research & Social Science. - : Elsevier. - 2214-6296 .- 2214-6326. ; 70
  • Tidskriftsartikel (refereegranskat)abstract
    • Formalised knowledge systems, including universities and research institutes, are important for contemporary societies. They are, however, also arguably failing humanity when their impact is measured against the level of progress being made in stimulating the societal changes needed to address challenges like climate change. In this research we used a novel futures-oriented and participatory approach that asked what future envisioned knowledge systems might need to look like and how we might get there. Findings suggest that envisioned future systems will need to be much more collaborative, open, diverse, egalitarian, and able to work with values and systemic issues. They will also need to go beyond producing knowledge about our world to generating wisdom about how to act within it. To get to envisioned systems we will need to rapidly scale methodological innovations, connect innovators, and creatively accelerate learning about working with intractable challenges. We will also need to create new funding schemes, a global knowledge commons, and challenge deeply held assumptions. To genuinely be a creative force in supporting longevity of human and non-human life on our planet, the shift in knowledge systems will probably need to be at the scale of the enlightenment and speed of the scientific and technological revolution accompanying the second World War. This will require bold and strategic action from governments, scientists, civic society and sustained transformational intent.
  •  
2.
  • Lawson, Kellen, et al. (författare)
  • SCExAO/CHARIS Near-infrared Integral Field Spectroscopy of the HD 15115 Debris Disk
  • 2020
  • Ingår i: Astronomical Journal. - : American Astronomical Society. - 0004-6256 .- 1538-3881. ; 160:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We present new, near-infrared (1.1-2.4 mu m) high-contrast imaging of the debris disk around HD 15115 with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). The SCExAO/CHARIS resolves the disk down to rho similar to 02 (r(proj) similar to 10 au), a factor of similar to 3-5 smaller than previous recent studies. We derive a disk position angle of PA similar to 2794-2805 and an inclination ofi similar to 853-86.2. While recent SPHERE/IRDIS imagery of the system could suggest a significantly misaligned two-ring disk geometry, CHARIS imagery does not reveal conclusive evidence for this hypothesis. Moreover, optimizing models of both one- and two-ring geometries using differential evolution, we find that a single ring having a Hong-like scattering phase function matches the data equally well within the CHARIS field of view (rho less than or similar to 1 ''). The disk's asymmetry, well evidenced at larger separations, is also recovered; the west side of the disk appears, on average, around 0.4 mag brighter across the CHARIS bandpass between 025 and 1 ''. Comparing Space Telescope Imaging Spectrograph (STIS) 50CCD optical photometry (2000-10500 A) with CHARIS near-infrared photometry, we find a red (STIS/50CCD-CHARIS broadband) color for both sides of the disk throughout the 04-1 '' region of overlap, in contrast to the blue color reported at similar wavelengths for regions exterior to similar to 2 ''. Further, this color may suggest a smaller minimum grain size than previously estimated at larger separations. Finally, we provide constraints on planetary companions and discuss possible mechanisms for the observed inner disk flux asymmetry and color.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy