SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schwenk Jochen M.) srt2:(2020)"

Sökning: WFRF:(Schwenk Jochen M.) > (2020)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bar, N., et al. (författare)
  • A reference map of potential determinants for the human serum metabolome
  • 2020
  • Ingår i: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 588:7836, s. 135-140
  • Tidskriftsartikel (refereegranskat)abstract
    • The serum metabolome contains a plethora of biomarkers and causative agents of various diseases, some of which are endogenously produced and some that have been taken up from the environment1. The origins of specific compounds are known, including metabolites that are highly heritable2,3, or those that are influenced by the gut microbiome4, by lifestyle choices such as smoking5, or by diet6. However, the key determinants of most metabolites are still poorly understood. Here we measured the levels of 1,251 metabolites in serum samples from a unique and deeply phenotyped healthy human cohort of 491 individuals. We applied machine-learning algorithms to predict metabolite levels in held-out individuals on the basis of host genetics, gut microbiome, clinical parameters, diet, lifestyle and anthropometric measurements, and obtained statistically significant predictions for more than 76% of the profiled metabolites. Diet and microbiome had the strongest predictive power, and each explained hundreds of metabolites—in some cases, explaining more than 50% of the observed variance. We further validated microbiome-related predictions by showing a high replication rate in two geographically independent cohorts7,8 that were not available to us when we trained the algorithms. We used feature attribution analysis9 to reveal specific dietary and bacterial interactions. We further demonstrate that some of these interactions might be causal, as some metabolites that we predicted to be positively associated with bread were found to increase after a randomized clinical trial of bread intervention. Overall, our results reveal potential determinants of more than 800 metabolites, paving the way towards a mechanistic understanding of alterations in metabolites under different conditions and to designing interventions for manipulating the levels of circulating metabolites. 
  •  
2.
  • Koivula, Robert W., et al. (författare)
  • The role of physical activity in metabolic homeostasis before and after the onset of type 2 diabetes : an IMI DIRECT study
  • 2020
  • Ingår i: Diabetologia. - : Springer Nature. - 0012-186X .- 1432-0428. ; 63:4, s. 744-756
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims/hypothesis: It is well established that physical activity, abdominal ectopic fat and glycaemic regulation are related but the underlying structure of these relationships is unclear. The previously proposed twin-cycle hypothesis (TC) provides a mechanistic basis for impairment in glycaemic control through the interactions of substrate availability, substrate metabolism and abdominal ectopic fat accumulation. Here, we hypothesise that the effect of physical activity in glucose regulation is mediated by the twin-cycle. We aimed to examine this notion in the Innovative Medicines Initiative Diabetes Research on Patient Stratification (IMI DIRECT) Consortium cohorts comprised of participants with normal or impaired glucose regulation (cohort 1: N ≤ 920) or with recently diagnosed type 2 diabetes (cohort 2: N ≤ 435). Methods: We defined a structural equation model that describes the TC and fitted this within the IMI DIRECT dataset. A second model, twin-cycle plus physical activity (TC-PA), to assess the extent to which the effects of physical activity in glycaemic regulation are mediated by components in the twin-cycle, was also fitted. Beta cell function, insulin sensitivity and glycaemic control were modelled from frequently sampled 75 g OGTTs (fsOGTTs) and mixed-meal tolerance tests (MMTTs) in participants without and with diabetes, respectively. Abdominal fat distribution was assessed using MRI, and physical activity through wrist-worn triaxial accelerometry. Results are presented as standardised beta coefficients, SE and p values, respectively. Results: The TC and TC-PA models showed better fit than null models (TC: χ2 = 242, p = 0.004 and χ2 = 63, p = 0.001 in cohort 1 and 2, respectively; TC-PA: χ2 = 180, p = 0.041 and χ2 = 60, p = 0.008 in cohort 1 and 2, respectively). The association of physical activity with glycaemic control was primarily mediated by variables in the liver fat cycle. Conclusions/interpretation: These analyses partially support the mechanisms proposed in the twin-cycle model and highlight mechanistic pathways through which insulin sensitivity and liver fat mediate the association between physical activity and glycaemic control.
  •  
3.
  • Dezfouli, Mahya, et al. (författare)
  • Newborn Screening for Presymptomatic Diagnosis of Complement and Phagocyte Deficiencies
  • 2020
  • Ingår i: Frontiers in Immunology. - : FRONTIERS MEDIA SA. - 1664-3224. ; 11
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical outcomes of primary immunodeficiencies (PIDs) are greatly improved by accurate diagnosis early in life. However, it is not common to consider PIDs before the manifestation of severe clinical symptoms. Including PIDs in the nation-wide newborn screening programs will potentially improve survival and provide better disease management and preventive care in PID patients. This calls for the detection of disease biomarkers in blood and the use of dried blood spot samples, which is a part of routine newborn screening programs worldwide. Here, we developed a newborn screening method based on multiplex protein profiling for parallel diagnosis of 22 innate immunodeficiencies affecting the complement system and respiratory burst function in phagocytosis. The proposed method uses a small fraction of eluted blood from dried blood spots and is applicable for population-scale performance. The diagnosis method is validated through a retrospective screening of immunodeficient patient samples. This diagnostic approach can pave the way for an earlier, more comprehensive and accurate diagnosis of complement and phagocytic disorders, which ultimately lead to a healthy and active life for the PID patients.
  •  
4.
  • Adhikari, Subash, et al. (författare)
  • A high-stringency blueprint of the human proteome
  • 2020
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Forskningsöversikt (refereegranskat)abstract
    • The Human Proteome Organization (HUPO) launched the Human Proteome Project (HPP) in 2010, creating an international framework for global collaboration, data sharing, quality assurance and enhancing accurate annotation of the genome-encoded proteome. During the subsequent decade, the HPP established collaborations, developed guidelines and metrics, and undertook reanalysis of previously deposited community data, continuously increasing the coverage of the human proteome. On the occasion of the HPP’s tenth anniversary, we here report a 90.4% complete high-stringency human proteome blueprint. This knowledge is essential for discerning molecular processes in health and disease, as we demonstrate by highlighting potential roles the human proteome plays in our understanding, diagnosis and treatment of cancers, cardiovascular and infectious diseases.
  •  
5.
  • Obura, Morgan, et al. (författare)
  • Post-load glucose subgroups and associated metabolic traits in individuals with type 2 diabetes : An IMI-DIRECT study
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15:11
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: Subclasses of different glycaemic disturbances could explain the variation in characteristics of individuals with type 2 diabetes (T2D). We aimed to examine the association between subgroups based on their glucose curves during a five-point mixed-meal tolerance test (MMT) and metabolic traits at baseline and glycaemic deterioration in individuals with T2D. METHODS: The study included 787 individuals with newly diagnosed T2D from the Diabetes Research on Patient Stratification (IMI-DIRECT) Study. Latent class trajectory analysis (LCTA) was used to identify distinct glucose curve subgroups during a five-point MMT. Using general linear models, these subgroups were associated with metabolic traits at baseline and after 18 months of follow up, adjusted for potential confounders. RESULTS: At baseline, we identified three glucose curve subgroups, labelled in order of increasing glucose peak levels as subgroup 1-3. Individuals in subgroup 2 and 3 were more likely to have higher levels of HbA1c, triglycerides and BMI at baseline, compared to those in subgroup 1. At 18 months (n = 651), the beta coefficients (95% CI) for change in HbA1c (mmol/mol) increased across subgroups with 0.37 (-0.18-1.92) for subgroup 2 and 1.88 (-0.08-3.85) for subgroup 3, relative to subgroup 1. The same trend was observed for change in levels of triglycerides and fasting glucose. CONCLUSIONS: Different glycaemic profiles with different metabolic traits and different degrees of subsequent glycaemic deterioration can be identified using data from a frequently sampled mixed-meal tolerance test in individuals with T2D. Subgroups with the highest peaks had greater metabolic risk.
  •  
6.
  • Abdellah, Tebani, et al. (författare)
  • Integration of molecular profiles in a longitudinal wellness profiling cohort.
  • 2020
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Tidskriftsartikel (refereegranskat)abstract
    • An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies andimmune cell profiling, complementedwith gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.
  •  
7.
  • Eriksen, Rebeca, et al. (författare)
  • Dietary metabolite profiling brings new insight into the relationship between nutrition and metabolic risk : An IMI DIRECT study
  • 2020
  • Ingår i: EBioMedicine. - : Elsevier BV. - 2352-3964. ; 58
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D). However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and cardiometabolic risk in people at risk of or living with T2D. Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n = 403 individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n = 458 individuals with new onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariable regression of 113 plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression models. Findings: A higher Tpred score was associated with healthier diets high in wholegrain (β=3.36 g, 95% CI 0.31, 6.40 and β=2.82 g, 95% CI 0.06, 5.57) and lower energy intake (β=-75.53 kcal, 95% CI -144.71, -2.35 and β=-122.51 kcal, 95% CI -186.56, -38.46), and saturated fat (β=-0.92 g, 95% CI -1.56, -0.28 and β=–0.98 g, 95% CI -1.53, -0.42 g), respectively for cohort 1 and 2. In both cohorts a higher Tpred score was also associated with lower total body adiposity and favourable lipid profiles HDL-cholesterol (β=0.07 mmol/L, 95% CI 0.03, 0.1), (β=0.08 mmol/L, 95% CI 0.04, 0.1), and triglycerides (β=-0.1 mmol/L, 95% CI -0.2, -0.03), (β=-0.2 mmol/L, 95% CI -0.3, -0.09), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with liver fat (β=-0.74%, 95% CI -0.67, -0.81), and lower fasting concentrations of HbA1c (β=-0.9 mmol/mol, 95% CI -1.5, -0.1), glucose (β=-0.2 mmol/L, 95% CI -0.4, -0.05) and insulin (β=-11.0 pmol/mol, 95% CI -19.5, -2.6). Longitudinal analysis showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both cohorts and lower fasting glucose (β=-0.2 mmol/L, 95% CI -0.3, -0.01) and insulin (β=-9.2 pmol/mol, 95% CI -17.9, -0.4) concentrations in cohort 2. Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a relationship to glycaemic deterioration and cardiometabolic health. Funding: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant agreement no. 115,317 (DIRECT), resources of which are composed of financial contribution from the European Union's Seventh Framework Programme (FP7/2007–2013) and EFPIA companies.
  •  
8.
  • Suhre, K., et al. (författare)
  • Genetics meets proteomics : perspectives for large population-based studies
  • 2020
  • Ingår i: Nature reviews genetics. - : Nature Research. - 1471-0056 .- 1471-0064.
  • Tidskriftsartikel (refereegranskat)abstract
    • Proteomic analysis of cells, tissues and body fluids has generated valuable insights into the complex processes influencing human biology. Proteins represent intermediate phenotypes for disease and provide insight into how genetic and non-genetic risk factors are mechanistically linked to clinical outcomes. Associations between protein levels and DNA sequence variants that colocalize with risk alleles for common diseases can expose disease-associated pathways, revealing novel drug targets and translational biomarkers. However, genome-wide, population-scale analyses of proteomic data are only now emerging. Here, we review current findings from studies of the plasma proteome and discuss their potential for advancing biomedical translation through the interpretation of genome-wide association analyses. We highlight the challenges faced by currently available technologies and provide perspectives relevant to their future application in large-scale biobank studies.
  •  
9.
  • Atabaki Pasdar, Naeimeh, et al. (författare)
  • Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts
  • 2020
  • Ingår i: PLoS Medicine. - San Francisco : Public Library of Science (PLoS). - 1549-1676 .- 1549-1277. ; 17:6, s. 1003149-1003149
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately, hepatocellular carcinomas. We sought to expand etiological understanding and develop a diagnostic tool for NAFLD using machine learning. METHODS AND FINDINGS: We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of 3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry, measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input variables. The models were trained on MRI-image-derived liver fat content (
  •  
10.
  • Dodig-Crnkovic, Tea, et al. (författare)
  • Facets of individual-specific health signatures determined from longitudinal plasma proteome profiling
  • 2020
  • Ingår i: Ebiomedicine. - : Elsevier BV. - 2352-3964. ; 57
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. Methods: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. Findings: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. Interpretation: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
doktorsavhandling (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Schwenk, Jochen M. (15)
Hong, Mun-Gwan (8)
Uhlén, Mathias (6)
Dodig-Crnkovic, Tea (4)
Edfors, Fredrik (4)
Franks, Paul W. (4)
visa fler...
Gummesson, Anders, 1 ... (3)
Odeberg, Jacob, Prof ... (3)
Nilsson, Peter (3)
Bergström, Göran, 19 ... (3)
Fagerberg, Linn (3)
Giordano, Giuseppe N ... (3)
McCarthy, Mark I (3)
Pedersen, Oluf (3)
Kurbasic, Azra (3)
Koivula, Robert W (3)
Mari, Andrea (3)
Vinuela, Ana (3)
Mahajan, Anubha (3)
De Masi, Federico (3)
Kokkola, Tarja (3)
Walker, Mark (3)
Forgie, Ian (3)
Pavo, Imre (3)
Mahajan, A. (2)
Franks, Paul (2)
Abdellah, Tebani (2)
Zhong, Wen (2)
Neiman, Maja, 1983- (2)
Karlsson, Max (2)
von Feilitzen, Kalle (2)
Forsström, Björn (2)
Lindskog, Cecilia (2)
Walker, M (2)
Adamski, J (2)
Ridderstråle, Martin (2)
Atabaki-Pasdar, Naei ... (2)
Laakso, Markku (2)
Hansen, Torben (2)
Koivula, Robert (2)
Mari, A (2)
Vinuela, A (2)
McCarthy, M. I. (2)
Laakso, M. (2)
Hansen, T. (2)
Pedersen, O. (2)
Brunak, S. (2)
Sharma, Sapna (2)
Haid, Mark (2)
Heggie, Alison (2)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (16)
Lunds universitet (8)
Karolinska Institutet (7)
Göteborgs universitet (4)
Umeå universitet (2)
Uppsala universitet (2)
visa fler...
Högskolan i Halmstad (1)
Stockholms universitet (1)
Linköpings universitet (1)
Sveriges Lantbruksuniversitet (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Naturvetenskap (3)
Teknik (1)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy