SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Soller M) srt2:(2015-2019)"

Sökning: WFRF:(Soller M) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
2.
  •  
3.
  • Nilsson, D., et al. (författare)
  • From cytogenetics to cytogenomics : whole genome sequencing as a comprehensive genetic test in rare disease diagnostics
  • 2019
  • Ingår i: European Journal of Human Genetics. - : Springer Nature. - 1018-4813 .- 1476-5438. ; 27, s. 1666-1667
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Rare genetic diseases are caused by different types of genetic variants, from single nucleotide variants (SNVs) to large chromosomal rearrangements. Recent data indicates that whole genome sequencing (WGS) may be used as a comprehensive test to identify multiple types of pathologic genetic aberrations in a single analysis.We present FindSV, a bioinformatic pipeline for detection of balanced (inversions and translocations) and unbalanced (deletions and duplications) structural variants (SVs). First, FindSV was tested on 106 validated deletions and duplications with a median size of 850 kb (min: 511 bp, max: 155 Mb). All variants were detected. Second, we demonstrated the clinical utility in 138 monogenic WGS panels. SV analysis yielded 11 diagnostic findings (8%). Remarkably, a complex structural rearrangement involving two clustered deletions disrupting SCN1A, SCN2A, and SCN3A was identified in a three months old girl with epileptic encephalopathy. Finally, 100 consecutive samples referred for clinical microarray were also analyzed by WGS. The WGS data was screened for large (>2 kbp) SVs genome wide, processed for visualization in our clinical routine arrayCGH workflow with the newly developed tool vcf2cytosure, and for exonic SVs and SNVs in a panel of 700 genes linked to intellectual disability. We also applied short tandem repeat (STR) expansion detection and discovered one pathologic expansion in ATXN7. The diagnostic rate (29%) was doubled compared to clinical microarray (12%).In conclusion, using WGS we have detected a wide range of structural variation with high accuracy, confirming it a powerful comprehensive genetic test in a clinical diagnostic laboratory setting.
  •  
4.
  •  
5.
  • Valind, Anders, et al. (författare)
  • The fetal thymus has a unique genomic copy number profile resulting from physiological T cell receptor gene rearrangement
  • 2016
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 6
  • Tidskriftsartikel (refereegranskat)abstract
    • Somatic mosaicism, the presence of genetically distinct cells within an organism, has been increasingly associated with human morbidity, ranging from being a cause of rare syndromes to a risk factor for common disorders such as malignancy and cardiovascular disease. Previous studies interrogating the normal prevalence of somatic mosaicism have focused on adults. We here present an estimate of the baseline frequency of somatic mosaic copy number variation (CNV) at the time around birth, by sampling eight different organs from a total of five fetuses and newborns. Overall we find a significantly lower frequency of organ specific (i.e. mosaic) CNVs as compared to adults (p = 0.003; Mann-Whitney U-test). The rate of somatic CNV in adults has been estimated to around 2.2 CNV per organ assayed. In contrast, after stringent filtering, we found no organ-private CNVs in fetuses or newborns with exception of the thymus. This organ exhibited a specific genome profile in the form of deletions resulting from polyclonal T-cell receptor rearrangements. This implies that somatic non-immune related CNVs, if present at birth, are typically confined to very small cell populations within organs.
  •  
6.
  •  
7.
  •  
8.
  • Depienne, Christel, et al. (författare)
  • Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU
  • 2017
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 136:4, s. 463-479
  • Tidskriftsartikel (refereegranskat)abstract
    • Subtelomeric 1q43q44 microdeletions cause a syndrome associating intellectual disability, microcephaly, seizures and anomalies of the corpus callosum. Despite several previous studies assessing genotype-phenotype correlations, the contribution of genes located in this region to the specific features of this syndrome remains uncertain. Among those, three genes, AKT3, HNRNPU and ZBTB18 are highly expressed in the brain and point mutations in these genes have been recently identified in children with neurodevelopmental phenotypes. In this study, we report the clinical and molecular data from 17 patients with 1q43q44 microdeletions, four with ZBTB18 mutations and seven with HNRNPU mutations, and review additional data from 37 previously published patients with 1q43q44 microdeletions. We compare clinical data of patients with 1q43q44 microdeletions with those of patients with point mutations in HNRNPU and ZBTB18 to assess the contribution of each gene as well as the possibility of epistasis between genes. Our study demonstrates that AKT3 haploinsufficiency is the main driver for microcephaly, whereas HNRNPU alteration mostly drives epilepsy and determines the degree of intellectual disability. ZBTB18 deletions or mutations are associated with variable corpus callosum anomalies with an incomplete penetrance. ZBTB18 may also contribute to microcephaly and HNRNPU to thin corpus callosum, but with a lower penetrance. Co-deletion of contiguous genes has additive effects. Our results confirm and refine the complex genotype-phenotype correlations existing in the 1qter microdeletion syndrome and define more precisely the neurodevelopmental phenotypes associated with genetic alterations of AKT3, ZBTB18 and HNRNPU in humans.
  •  
9.
  •  
10.
  • Dondorp, W., et al. (författare)
  • Non-invasive prenatal testing for aneuploidy and beyond : challenges of responsible innovation in prenatal screening
  • 2015
  • Ingår i: Eur J Hum Genet. - : Springer Science and Business Media LLC. ; 23:11, s. 1438-1450
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper contains a joint ESHG/ASHG position document with recommendations regarding responsible innovation in prenatal screening with non-invasive prenatal testing (NIPT). By virtue of its greater accuracy and safety with respect to prenatal screening for common autosomal aneuploidies, NIPT has the potential of helping the practice better achieve its aim of facilitating autonomous reproductive choices, provided that balanced pretest information and non-directive counseling are available as part of the screening offer. Depending on the health-care setting, different scenarios for NIPT-based screening for common autosomal aneuploidies are possible. The trade-offs involved in these scenarios should be assessed in light of the aim of screening, the balance of benefits and burdens for pregnant women and their partners and considerations of cost-effectiveness and justice. With improving screening technologies and decreasing costs of sequencing and analysis, it will become possible in the near future to significantly expand the scope of prenatal screening beyond common autosomal aneuploidies. Commercial providers have already begun expanding their tests to include sex-chromosomal abnormalities and microdeletions. However, multiple false positives may undermine the main achievement of NIPT in the context of prenatal screening: the significant reduction of the invasive testing rate. This document argues for a cautious expansion of the scope of prenatal screening to serious congenital and childhood disorders, only following sound validation studies and a comprehensive evaluation of all relevant aspects. A further core message of this document is that in countries where prenatal screening is offered as a public health programme, governments and public health authorities should adopt an active role to ensure the responsible innovation of prenatal screening on the basis of ethical principles. Crucial elements are the quality of the screening process as a whole (including non-laboratory aspects such as information and counseling), education of professionals, systematic evaluation of all aspects of prenatal screening, development of better evaluation tools in the light of the aim of the practice, accountability to all stakeholders including children born from screened pregnancies and persons living with the conditions targeted in prenatal screening and promotion of equity of access.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy