SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Stahl E) srt2:(2020)"

Sökning: WFRF:(Stahl E) > (2020)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Bigdeli, TB, et al. (författare)
  • Contributions of common genetic variants to risk of schizophrenia among individuals of African and Latino ancestry
  • 2020
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 25:10, s. 2455-2467
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a common, chronic and debilitating neuropsychiatric syndrome affecting tens of millions of individuals worldwide. While rare genetic variants play a role in the etiology of schizophrenia, most of the currently explained liability is within common variation, suggesting that variation predating the human diaspora out of Africa harbors a large fraction of the common variant attributable heritability. However, common variant association studies in schizophrenia have concentrated mainly on cohorts of European descent. We describe genome-wide association studies of 6152 cases and 3918 controls of admixed African ancestry, and of 1234 cases and 3090 controls of Latino ancestry, representing the largest such study in these populations to date. Combining results from the samples with African ancestry with summary statistics from the Psychiatric Genomics Consortium (PGC) study of schizophrenia yielded seven newly genome-wide significant loci, and we identified an additional eight loci by incorporating the results from samples with Latino ancestry. Leveraging population differences in patterns of linkage disequilibrium, we achieve improved fine-mapping resolution at 22 previously reported and 4 newly significant loci. Polygenic risk score profiling revealed improved prediction based on trans-ancestry meta-analysis results for admixed African (Nagelkerke’s R2 = 0.032; liability R2 = 0.017; P < 10−52), Latino (Nagelkerke’s R2 = 0.089; liability R2 = 0.021; P < 10−58), and European individuals (Nagelkerke’s R2 = 0.089; liability R2 = 0.037; P < 10−113), further highlighting the advantages of incorporating data from diverse human populations.
  •  
6.
  • Carneiro, Ana P. B., et al. (författare)
  • A framework for mapping the distribution of seabirds by integrating tracking, demography and phenology
  • 2020
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 57:3, s. 514-525
  • Tidskriftsartikel (refereegranskat)abstract
    • The identification of geographic areas where the densities of animals are highest across their annual cycles is a crucial step in conservation planning. In marine environments, however, it can be particularly difficult to map the distribution of species, and the methods used are usually biased towards adults, neglecting the distribution of other life-history stages even though they can represent a substantial proportion of the total population. Here we develop a methodological framework for estimating population-level density distributions of seabirds, integrating tracking data across the main life-history stages (adult breeders and non-breeders, juveniles and immatures). We incorporate demographic information (adult and juvenile/immature survival, breeding frequency and success, age at first breeding) and phenological data (average timing of breeding and migration) to weight distribution maps according to the proportion of the population represented by each life-history stage. We demonstrate the utility of this framework by applying it to 22 species of albatrosses and petrels that are of conservation concern due to interactions with fisheries. Because juveniles, immatures and non-breeding adults account for 47%-81% of all individuals of the populations analysed, ignoring the distributions of birds in these stages leads to biased estimates of overlap with threats, and may misdirect management and conservation efforts. Population-level distribution maps using only adult distributions underestimated exposure to longline fishing effort by 18%-42%, compared with overlap scores based on data from all life-history stages. Synthesis and applications. Our framework synthesizes and improves on previous approaches to estimate seabird densities at sea, is applicable for data-poor situations, and provides a standard and repeatable method that can be easily updated as new tracking and demographic data become available. We provide scripts in the R language and a Shiny app to facilitate future applications of our approach. We recommend that where sufficient tracking data are available, this framework be used to assess overlap of seabirds with at-sea threats such as overharvesting, fisheries bycatch, shipping, offshore industry and pollutants. Based on such an analysis, conservation interventions could be directed towards areas where they have the greatest impact on populations.
  •  
7.
  • Elmi-Terander, A, et al. (författare)
  • Augmented reality navigation with intraoperative 3D imaging vs fluoroscopy-assisted free-hand surgery for spine fixation surgery: a matched-control study comparing accuracy
  • 2020
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1, s. 707-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study aimed to compare screw placement accuracy and clinical aspects between Augmented Reality Surgical Navigation (ARSN) and free-hand (FH) technique. Twenty patients underwent spine surgery with screw placement using ARSN and were matched retrospectively to a cohort of 20 FH technique cases for comparison. All ARSN and FH cases were performed by the same surgeon. Matching was based on clinical diagnosis and similar proportions of screws placed in the thoracic and lumbosacral vertebrae in both groups. Accuracy of screw placement was assessed on postoperative scans according to the Gertzbein scale and grades 0 and 1 were considered accurate. Procedure time, blood loss and length of hospital stay, were collected as secondary endpoints. A total of 262 and 288 screws were assessed in the ARSN and FH groups, respectively. The share of clinically accurate screws was significantly higher in the ARSN vs FH group (93.9% vs 89.6%, p < 0.05). The proportion of screws placed without a cortical breach was twice as high in the ARSN group compared to the FH group (63.4% vs 30.6%, p < 0.0001). No statistical difference was observed for the secondary endpoints between both groups. This matched-control study demonstrated that ARSN provided higher screw placement accuracy compared to free-hand.
  •  
8.
  •  
9.
  •  
10.
  • Pivodic, Aldina, 1978, et al. (författare)
  • Individual Risk Prediction for Sight-Threatening Retinopathy of Prematurity Using Birth Characteristics
  • 2020
  • Ingår i: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165 .- 2168-6173. ; 138:1, s. 21-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: To prevent blindness, repeated infant eye examinations are performed to detect severe retinopathy of prematurity (ROP), yet only a small fraction of those screened need treatment. Early individual risk stratification would improve screening timing and efficiency and potentially reduce the risk of blindness. Objectives: To create and validate an easy-to-use prediction model using only birth characteristics and to describe a continuous hazard function for ROP treatment. Design, Setting, and Participants: In this retrospective cohort study, Swedish National Patient Registry data from infants screened for ROP (born between January 1, 2007, and August 7, 2018) were analyzed with Poisson regression for time-varying data (postnatal age, gestational age [GA], sex, birth weight, and important interactions) to develop an individualized predictive model for ROP treatment (called DIGIROP-Birth [Digital ROP]). The model was validated internally and externally (in US and European cohorts) and compared with 4 published prediction models. Main Outcomes and Measures: The study outcome was ROP treatment. The measures were estimated momentary and cumulative risks, hazard ratios with 95% CIs, area under the receiver operating characteristic curve (hereinafter referred to as AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). Results: Among 7609 infants (54.6% boys; mean [SD] GA, 28.1 [2.1] weeks; mean [SD] birth weight, 1119 [353] g), 442 (5.8%) were treated for ROP, including 142 (40.1%) treated of 354 born at less than 24 gestational weeks. Irrespective of GA, the risk for receiving ROP treatment increased during postnatal weeks 8 through 12 and decreased thereafter. Validations of DIGIROP-Birth for 24 to 30 weeks' GA showed high predictive ability for the model overall (AUC, 0.90 [95% CI, 0.89-0.92] for internal validation, 0.94 [95% CI, 0.90-0.98] for temporal validation, 0.87 [95% CI, 0.84-0.89] for US external validation, and 0.90 [95% CI, 0.85-0.95] for European external validation) by calendar periods and by race/ethnicity. The sensitivity, specificity, PPV, and NPV were numerically at least as high as those obtained from CHOP-ROP (Children's Hospital of Philadelphia-ROP), OMA-ROP (Omaha-ROP), WINROP (weight, insulinlike growth factor 1, neonatal, ROP), and CO-ROP (Colorado-ROP), models requiring more complex postnatal data. Conclusions and Relevance: This study validated an individualized prediction model for infants born at 24 to 30 weeks' GA, enabling early risk prediction of ROP treatment based on birth characteristics data. Postnatal age rather than postmenstrual age was a better predictive variable for the temporal risk of ROP treatment. The model is an accessible online application that appears to be generalizable and to have at least as good test statistics as other models requiring longitudinal neonatal data not always readily available to ophthalmologists.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy