SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Voight Benjamin) srt2:(2011)"

Sökning: WFRF:(Voight Benjamin) > (2011)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schunkert, Heribert, et al. (författare)
  • Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:4, s. 153-333
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed a meta-analysis of 14 genome-wide association studies of coronary artery disease (CAD) comprising 22,233 individuals with CAD (cases) and 64,762 controls of European descent followed by genotyping of top association signals in 56,682 additional individuals. This analysis identified 13 loci newly associated with CAD at P < 5 x 10(-8) and confirmed the association of 10 of 12 previously reported CAD loci. The 13 new loci showed risk allele frequencies ranging from 0.13 to 0.91 and were associated with a 6% to 17% increase in the risk of CAD per allele. Notably, only three of the new loci showed significant association with traditional CAD risk factors and the majority lie in gene regions not previously implicated in the pathogenesis of CAD. Finally, five of the new CAD risk loci appear to have pleiotropic effects, showing strong association with various other human diseases or traits.
  •  
2.
  • Neale, Benjamin M., et al. (författare)
  • Testing for an Unusual Distribution of Rare Variants
  • 2011
  • Ingår i: PLoS Genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Technological advances make it possible to use high-throughput sequencing as a primary discovery tool of medical genetics, specifically for assaying rare variation. Still this approach faces the analytic challenge that the influence of very rare variants can only be evaluated effectively as a group. A further complication is that any given rare variant could have no effect, could increase risk, or could be protective. We propose here the C-alpha test statistic as a novel approach for testing for the presence of this mixture of effects across a set of rare variants. Unlike existing burden tests, C-alpha, by testing the variance rather than the mean, maintains consistent power when the target set contains both risk and protective variants. Through simulations and analysis of case/control data, we demonstrate good power relative to existing methods that assess the burden of rare variants in individuals.
  •  
3.
  • Guey, Lin T., et al. (författare)
  • Power in the Phenotypic Extremes: A Simulation Study of Power in Discovery and Replication of Rare Variants
  • 2011
  • Ingår i: Genetic Epidemiology. - : Wiley. - 0741-0395. ; 35:4, s. 236-246
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing technologies are making it possible to study the role of rare variants in human disease. Many studies balance statistical power with cost-effectiveness by (a) sampling from phenotypic extremes and (b) utilizing a two-stage design. Two-stage designs include a broad-based discovery phase and selection of a subset of potential causal genes/variants to be further examined in independent samples. We evaluate three parameters: first, the gain in statistical power due to extreme sampling to discover causal variants; second, the informativeness of initial (Phase I) association statistics to select genes/variants for follow-up; third, the impact of extreme and random sampling in (Phase 2) replication. We present a quantitative method to select individuals from the phenotypic extremes of a binary trait, and simulate disease association studies under a variety of sample sizes and sampling schemes. First, we find that while studies sampling from extremes have excellent power to discover rare variants, they have limited power to associate them to phenotype-suggesting high false-negative rates for upcoming studies. Second, consistent with previous studies, we find that the effect sizes estimated in these studies are expected to be systematically larger compared with the overall population effect size; in a well-cited lipids study, we estimate the reported effect to be twofold larger. Third, replication studies require large samples from the general population to have sufficient power; extreme sampling could reduce the required sample size as much as fourfold. Our observations offer practical guidance for the design and interpretation of studies that utilize extreme sampling. Genet. Epidemiol. 35: 236-246, 2011. (c) 2011 Wiley-Liss, Inc.
  •  
4.
  • Speliotes, Elizabeth K, et al. (författare)
  • Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits.
  • 2011
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 7:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.
  •  
5.
  • Wild, Philipp S., et al. (författare)
  • A Genome-Wide Association Study Identifies LIPA as a Susceptibility Gene for Coronary Artery Disease
  • 2011
  • Ingår i: Circulation: Cardiovascular Genetics. - : American Heart Association/Lippincott, Williams & Wilkins. - 1942-325X .- 1942-3268. ; 4:4, s. 203-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Background-eQTL analyses are important to improve the understanding of genetic association results. We performed a genome-wide association and global gene expression study to identify functionally relevant variants affecting the risk of coronary artery disease (CAD). Methods and Results-In a genome-wide association analysis of 2078 CAD cases and 2953 control subjects, we identified 950 single-nucleotide polymorphisms (SNPs) that were associated with CAD at P<10(-3). Subsequent in silico and wet-laboratory replication stages and a final meta-analysis of 21 428 CAD cases and 38 361 control subjects revealed a novel association signal at chromosome 10q23.31 within the LIPA (lysosomal acid lipase A) gene (P=3.7 x 10(-8); odds ratio, 1.1; 95% confidence interval, 1.07 to 1.14). The association of this locus with global gene expression was assessed by genome-wide expression analyses in the monocyte transcriptome of 1494 individuals. The results showed a strong association of this locus with expression of the LIPA transcript (P=1.3 x 10(-96)). An assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association of LIPA transcript levels with impaired endothelial function (P=4.4 x 10(-3)). Conclusions-The use of data on genetic variants and the addition of data on global monocytic gene expression led to the identification of the novel functional CAD susceptibility locus LIPA, located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect LIPA gene expression level, which was related to endothelial dysfunction, a precursor of CAD. (Circ Cardiovasc Genet. 2011;4:403-412.)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy