SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wadelius Claes) srt2:(2005-2009)"

Search: WFRF:(Wadelius Claes) > (2005-2009)

  • Result 1-10 of 29
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Mölsä, Melissa, et al. (author)
  • Functional role of P-glycoprotein in the human blood-placental barrier
  • 2005
  • In: Clinical Pharmacology and Therapeutics. - : Springer Science and Business Media LLC. - 0009-9236 .- 1532-6535. ; 78:2, s. 123-31
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: In vitro and animal experiments suggest that P-glycoprotein forms a functional barrier between maternal and fetal blood circulation in the placenta, thus protecting the fetus from exposure to xenobiotics during pregnancy. In this study we aimed to characterize the role of P-glycoprotein in the blood-placental barrier by use of dually perfused human placenta. METHODS: Twenty-eight human placentas were obtained after delivery, and both the maternal side and the fetal side were perfused for 2 hours. Saquinavir was used as a probe drug for P-glycoprotein-dependent active transfer, and PSC833 (valspodar) or GG918 was used as an inhibitor of P-glycoprotein function in a maternal-to-fetal and fetal-to-maternal perfusion setting. Genotyping for ABCB1 (C3435T and G2677A/T) polymorphism and quantification of P-glycoprotein expression were done for each placenta. RESULTS: The fetal-to-maternal transfer of saquinavir was 108-fold higher (P = .003) compared with transfer from the maternal to the fetal direction. Preperfusion with PSC833 increased the placental transfer of saquinavir by 7.9-fold (P < .001), and preperfusion with GG918 increased it by 6.2-fold (P < .001). The end-perfusion transfer (percentage) of saquinavir at 120 minutes was 11-fold (P < .001) and 6-fold (P < .001) higher in placentas preperfused with PSC833 and GG918, respectively, compared with control. However, PSC833 had no effect on the transfer of saquinavir from the fetal to the maternal direction (P = .79). P-glycoprotein expression was correlated with the PSC833-induced change in the saquinavir transfer (r = 0.75, P = .086). ABCB1 polymorphism did not affect the PSC833- or GG918-induced change in the saquinavir transfer. CONCLUSIONS: P-glycoprotein has a major functional role in the human blood-placental barrier but a negligible role in the removal of substances from the fetal circulation to maternal blood. Pharmacologic blockade of P-glycoprotein function can lead to disruption of the blood-placental barrier and increase the transfer of P-glycoprotein substrates to the fetal side by several-fold, which may be a noteworthy mechanism for teratogenicity.
  •  
2.
  • Rahi, M., et al. (author)
  • Influence of adenosine triphosphate and ABCB1 (MDR1) genotype on the P-glycoprotein-dependent transfer of saquinavir in the dually perfused human placenta
  • 2008
  • In: Human and Experimental Toxicology. - : SAGE Publications. - 0960-3271 .- 1477-0903. ; 27:1, s. 65-71
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The ATP-dependent drug-efflux pump, P-glycoprotein (P-gp) encoded by ABCB1 (MDR1), plays a crucial role in several tissues forming blood-tissue barriers. Absence of a normally functioning P-gp can lead to a highly increased tissue penetration of a number of clinically important drugs. METHODS: We have studied the dose-response effect of exogenous ATP on the placental transfer of the well-established P-gp substrate saquinavir in 17 dually perfused human term placentas. We have also studied the influence of the ABCB1 polymorphisms 2677G>T/A and 3435C>T on placental P-gp expression (n = 44) and the transfer (n = 16) of saquinavir. RESULTS: The present results indicate that the addition of exogenous ATP to the perfusion medium does not affect the function of P-gp as measured by saquinavir transfer across the human placenta. The variant allele 3435T was associated with significantly higher placental P-gp expression than the wild-type alleles. However, neither polymorphism affected placental transfer of saquinavir nor there was any correlation between P-gp expression and saquinavir transfer. CONCLUSIONS: Our results indicate that addition of exogenous ATP is not required for ATP-dependent transporter function in a dually perfused human placenta. Although the ABCB1 polymorphism 3435C>T altered the expression levels of P-gp in the human placenta, this did not have any consequences on P-gp-mediated placental transfer of saquinavir.
  •  
3.
  • Rahi, Melissa, et al. (author)
  • Placental transfer of quetiapine in relation to P-glycoprotein activity
  • 2007
  • In: Journal of Psychopharmacology. - : SAGE Publications. - 0269-8811 .- 1461-7285. ; 21:7, s. 751-756
  • Journal article (peer-reviewed)abstract
    • Atypical antipsychotic drugs are well tolerated and thus often preferred in women of fertile age; yet the information on their placental transfer and use during the prenatal period is limited. The aim of this study was to study the placental transfer of quetiapine, a widely used atypical antipsychotic, with special reference to the role of the placental transporter protein, P-glycoprotein (P-gp). This was performed in 18 dually perfused placentas, using the well established P-gp inhibitors PSC833 (valspodar) and GG918 to inhibit the function of P-gp. We also aimed to clarify the significance of two potentially functional ABCB1 single nuclear polymorphisms (SNPs), 2677G>T/A and 3435C>T, on the transplacental transfer (TPT) of quetiapine. The placental transfer of quetiapine in the control group as measured by TPTAUC % (absolute fraction of the dose crossing placenta) was 3.7%, which is 29% less than the transfer of the freely diffusible antipyrine, which was 5.2%. The P-gp inhibitors had no significant effect on the transfer of quetiapine as measured by TPTAUC % (P = 0.77). No correlation was found between the transplacental transfer of quetiapine (TPTAUC %) and placental P-gp expression (P = 0.61). The 3435T allele in exon 26 was associated with significantly higher placental transfer of quetiapine (P = 0.04). We conclude that quetiapine passes the human placenta but that the blood-placental barrier partially limits the transplacental transfer of quetiapine. Administration of P-gp inhibiting drugs with quetiapine is not likely to increase fetal exposure to quetiapine, although the ABCB1 C3435T polymorphism may contribute to inter-individual variation in fetal exposure to quetiapine.
  •  
4.
  • Wadelius, Mia, et al. (author)
  • Association of warfarin dose with genes involved in its action and metabolism
  • 2007
  • In: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 121:1, s. 23-34
  • Journal article (peer-reviewed)abstract
    • We report an extensive study of variability in genes encoding proteins that are believed to be involved in the action and biotransformation of warfarin. Warfarin is a commonly prescribed anticoagulant that is difficult to use because of the wide interindividual variation in dose requirements, the narrow therapeutic range and the risk of serious bleeding. We genotyped 201 patients for polymorphisms in 29 genes in the warfarin interactive pathways and tested them for association with dose requirement. In our study, polymorphisms in or flanking the genes VKORC1, CYP2C9, CYP2C18, CYP2C19, PROC, APOE, EPHX1, CALU, GGCX and ORM1-ORM2 and haplotypes of VKORC1, CYP2C9, CYP2C8, CYP2C19, PROC, F7, GGCX, PROZ, F9, NR1I2 and ORM1-ORM2 were associated with dose (P < 0.05). VKORC1, CYP2C9, CYP2C18 and CYP2C19 were significant after experiment-wise correction for multiple testing (P < 0.000175), however, the association of CYP2C18 and CYP2C19 was fully explained by linkage disequilibrium with CYP2C9*2 and/or *3. PROC and APOE were both significantly associated with dose after correction within each gene. A multiple regression model with VKORC1, CYP2C9, PROC and the non-genetic predictors age, bodyweight, drug interactions and indication for treatment jointly accounted for 62% of variance in warfarin dose. Weaker associations observed for other genes could explain up to approximately 10% additional dose variance, but require testing and validation in an independent and larger data set. Translation of this knowledge into clinical guidelines for warfarin prescription will be likely to have a major impact on the safety and efficacy of warfarin.
  •  
5.
  • Wadelius, Mia, et al. (author)
  • Common VKORC1 and GGCX polymorphisms associated with warfarin dose
  • 2005
  • In: The Pharmacogenomics Journal. - : Springer Science and Business Media LLC. - 1470-269X .- 1473-1150. ; 5:4, s. 262-70
  • Journal article (peer-reviewed)abstract
    • We report a novel combination of factors that explains almost 60% of variable response to warfarin. Warfarin is a widely used anticoagulant, which acts through interference with vitamin K epoxide reductase that is encoded by VKORC1. In the next step of the vitamin K cycle, gamma-glutamyl carboxylase encoded by GGCX uses reduced vitamin K to activate clotting factors. We genotyped 201 warfarin-treated patients for common polymorphisms in VKORC1 and GGCX. All the five VKORC1 single-nucleotide polymorphisms covary significantly with warfarin dose, and explain 29-30% of variance in dose. Thus, VKORC1 has a larger impact than cytochrome P450 2C9, which explains 12% of variance in dose. In addition, one GGCX SNP showed a small but significant effect on warfarin dose. Incorrect dosage, especially during the initial phase of treatment, carries a high risk of either severe bleeding or failure to prevent thromboembolism. Genotype-based dose predictions may in future enable personalised drug treatment from the start of warfarin therapy.The Pharmacogenomics Journal advance online publication, 10 May 2005; doi:10.1038/sj.tpj.6500313.
  •  
6.
  • Ameur, Adam, 1977- (author)
  • A Bioinformatics Study of Human Transcriptional Regulation
  • 2008
  • Doctoral thesis (other academic/artistic)abstract
    • Regulation of transcription is a central mechanism in all living cells that now can be investigated with high-throughput technologies. Data produced from such experiments give new insights to how transcription factors (TFs) coordinate the gene transcription and thereby regulate the amounts of proteins produced. These studies are also important from a medical perspective since TF proteins are often involved in disease. To learn more about transcriptional regulation, we have developed strategies for analysis of data from microarray and massively parallel sequencing (MPS) experiments.Our computational results consist of methods to handle the steadily increasing amount of data from high-throughput technologies. Microarray data analysis tools have been assembled in the LCB-Data Warehouse (LCB-DWH) (paper I), and other analysis strategies have been developed for MPS data (paper V). We have also developed a de novo motif search algorithm called BCRANK (paper IV).The analysis has lead to interesting biological findings in human liver cells (papers II-V). The investigated TFs appeared to bind at several thousand sites in the genome, that we have identified at base pair resolution. The investigated histone modifications are mainly found downstream of transcription start sites, and correlated to transcriptional activity. These histone marks are frequently found for pairs of genes in a bidirectional conformation. Our results suggest that a TF can bind in the shared promoter of two genes and regulate both of them.From a medical perspective, the genes bound by the investigated TFs are candidates to be involved in metabolic disorders. Moreover, we have developed a new strategy to detect single nucleotide polymorphisms (SNPs) that disrupt the binding of a TF (paper IV). We further demonstrated that SNPs can affect transcription in the immediate vicinity. Ultimately, our method may prove helpful to find disease-causing regulatory SNPs.
  •  
7.
  • Ameur, Adam, et al. (author)
  • Identification of candidate regulatory SNPs by combination of transcription-factor-binding site prediction, SNP genotyping and haploChIP
  • 2009
  • In: Nucleic Acids Research. - : Oxford University Press (OUP). - 0305-1048 .- 1362-4962. ; 37:12, s. e85-
  • Journal article (peer-reviewed)abstract
    • Disease-associated SNPs detected in large-scale association studies are   frequently located in non-coding genomic regions, suggesting that they may be involved in transcriptional regulation. Here we describe a new strategy for detecting regulatory SNPs (rSNPs), by combining   computational and experimental approaches. Whole genome ChIP-chip data   for USF1 was analyzed using a novel motif finding algorithm called   BCRANK. 1754 binding sites were identified and 140 candidate rSNPs were   found in the predicted sites. For validating their regulatory function,   seven SNPs found to be heterozygous in at least one of four human cell   samples were investigated by ChIP and sequence analysis (haploChIP). In   four of five cases where the SNP was predicted to affect binding, USF1   was preferentially bound to the allele containing the consensus motif.   Allelic differences in binding for other proteins and histone marks   further reinforced the SNPs regulatory potential. Moreover, for one of   these SNPs, H3K36me3 and POLR2A levels at neighboring heterozygous SNPs   indicated effects on transcription. Our strategy, which is entirely   based on in vivo data for both the prediction and validation steps, can   identify individual binding sites at base pair resolution and predict   rSNPs. Overall, this approach can help to pinpoint the causative SNPs   in complex disorders where the associated haplotypes are located in regulatory regions. Availability: BCRANK is available from Bioconductor  (http://www.bioconductor.org).
  •  
8.
  • Andersson, Robin, et al. (author)
  • Nucleosomes are well positioned in exons and carry characteristic histone modifications
  • 2009
  • In: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 19:10, s. 1732-1741
  • Journal article (peer-reviewed)abstract
    • The genomes of higher organisms are packaged in nucleosomes with functional histone modifications. Until now, genome-wide nucleosome and histone modification studies have focused on transcription start sites (TSSs) where nucleosomes in RNA polymerase II (RNAPII) occupied genes are well positioned and have histone modifications that are characteristic of expression status. Using public data, we here show that there is a higher nucleosome-positioning signal in internal human exons and that this positioning is independent of expression. We observed a similarly strong nucleosome-positioning signal in internal exons of C. elegans. Among the 38 histone modifications analyzed in man, H3K36me3, H3K79me1, H2BK5me1, H3K27me1, H3K27me2 and H3K27me3 had evidently higher signal in internal exons than in the following introns and were clearly related to exon expression. These observations are suggestive of roles in splicing. Thus, exons are not only characterized by their coding capacity but also by their nucleosome organization, which seems evolutionary conserved since it is present in both primates and nematodes.
  •  
9.
  • Bakall, Benjamin, et al. (author)
  • Enhanced accumulation of A2E in individuals homozygous or heterozygous for mutations in BEST1 (VMD2)
  • 2007
  • In: Experimental Eye Research. - : Elsevier BV. - 0014-4835 .- 1096-0007. ; 85:1, s. 34-43
  • Journal article (peer-reviewed)abstract
    • Best vitelliform macular dystrophy (BMD) is an autosomal dominant inherited macular degenerative disease caused by mutations in the gene BEST1 (formerly VMD2). Prior reports indicate that BMD is characterized histopathologically by accumulation of lipofuscin in the retinal pigment epithelium (RPE). However, this accumulation has not been quantified and the chemical composition of lipofuscin in BMD has not been examined. In this study we characterize the histopathology of a donor eye from a rare individual homozygous for a mutation (W93C) in BEST1. We find that this individual's disease was not any more severe than has been described for heterozygotes. We then used this tissue to quantify lipofuscin accumulation by enriching intracellular granules from RPE cells on sucrose gradients and counting the granules in each density fraction. Granules from the homozygous donor eye as well as a donor eye from an individual heterozygous for the mutation T6R were compared with age-matched control eyes. Interestingly, the least dense fraction, representing classical lipofuscin granules was either not present or significantly diminished in the BMD donor eyes and the autoflourescence associated with lipofuscin had shifted to denser fractions. However, a substantial enrichment for granules in fractions of higher density was also noted in the BMD samples. Inspection of granules from the homozygous donor eye by electron microscopy revealed a complex abnormal multilobular structure. Analysis of granules by HPLC indicated a 1.6- and fourfold overall increase in A2E in the BMD eyes versus age-matched control eyes, with a shift of A2E to more dense granules in the BMD donor eyes. Despite the increase in A2E and total intracellular granules, the RPE in the homozygous donor eyes was relatively well preserved. Based on these data we conclude that the clinical and histopathologic consequences to the homozygous donor were not any more severe than has been reported previously for individuals who are established or presumptive heterozygotes. We find that A2E is a component of the lipofuscin accumulated in BMD and that it is more abundant than in control eyes suggesting that the etiology of BMD is similar to Stargardt's disease and Stargardt-like macular dystrophy. Finally, the changes we observe in the granules suggest that the histopathology and eventual vision loss associated with BMD may be due to defects in the ability of the RPE to fully degrade phagocytosed photoreceptor outer segments.
  •  
10.
  • Birney, Ewan, et al. (author)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Journal article (peer-reviewed)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 29
Type of publication
journal article (25)
doctoral thesis (3)
book chapter (1)
Type of content
peer-reviewed (25)
other academic/artistic (4)
Author/Editor
Wadelius, Claes (26)
Wallerman, Ola (10)
Enroth, Stefan (9)
Wadelius, Mia (5)
Pontén, Fredrik (2)
Eriksson, Niclas (2)
show more...
Lindblad-Toh, Kersti ... (2)
Hakkola, Jukka (2)
Lander, Eric S. (2)
Patra, Kalicharan (2)
Nikolaev, Sergey (1)
Andersson, Göran (1)
Schallmeiner, Edith (1)
Landegren, Ulf (1)
Kamali-Moghaddam, Ma ... (1)
Lindroth, Anders (1)
Påhlman, Lars (1)
Antonarakis, Stylian ... (1)
Dermitzakis, Emmanou ... (1)
Estivill, Xavier (1)
Flicek, Paul (1)
Guigo, Roderic (1)
Valencia, Alfonso (1)
Deloukas, Panos (1)
Zhang, Nancy R. (1)
Strömberg, Sara (1)
Montgomery, Stephen ... (1)
Heikkinen, T (1)
Deloukas, P. (1)
Thorleifsson, Gudmar (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Hunt, S (1)
Emanuelsson, Olof (1)
Liu, Jun (1)
Wanders, A (1)
Melhus, Håkan (1)
Andersson, Leif (1)
Pachter, Lior (1)
Lopez-Bigas, Nuria (1)
Wheeler, David A (1)
Jaffe, Jacob D. (1)
Haussler, David (1)
de Jong, Pieter J. (1)
Whelan, Simon (1)
Westin, Gunnar (1)
Jiang, Nan (1)
Kullander, Klas (1)
Gnerre, Sante (1)
Gnirke, Andreas (1)
show less...
University
Uppsala University (29)
Umeå University (1)
Royal Institute of Technology (1)
Karolinska Institutet (1)
Swedish University of Agricultural Sciences (1)
Language
English (29)
Research subject (UKÄ/SCB)
Natural sciences (5)
Medical and Health Sciences (4)
Agricultural Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view