SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wardlaw J.) srt2:(2020-2021)"

Search: WFRF:(Wardlaw J.) > (2020-2021)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Jia, TY, et al. (author)
  • Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group
  • 2021
  • In: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26:8, s. 3884-3895
  • Journal article (peer-reviewed)abstract
    • DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)—three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.
  •  
2.
  • Mok, V. C. T., et al. (author)
  • Tackling challenges in care of Alzheimer's disease and other dementias amid the COVID-19 pandemic, now and in the future
  • 2020
  • In: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 16:11, s. 1571-1581
  • Journal article (peer-reviewed)abstract
    • We have provided an overview on the profound impact of COVID-19 upon older people with Alzheimer's disease and other dementias and the challenges encountered in our management of dementia in different health-care settings, including hospital, out-patient, care homes, and the community during the COVID-19 pandemic. We have also proposed a conceptual framework and practical suggestions for health-care providers in tackling these challenges, which can also apply to the care of older people in general, with or without other neurological diseases, such as stroke or parkinsonism. We believe this review will provide strategic directions and set standards for health-care leaders in dementia, including governmental bodies around the world in coordinating emergency response plans for protecting and caring for older people with dementia amid the COIVD-19 outbreak, which is likely to continue at varying severity in different regions around the world in the medium term. © 2020 the Alzheimer's Association
  •  
3.
  • Mok, VCT, et al. (author)
  • Erratum
  • 2021
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:5, s. 906-907
  • Journal article (other academic/artistic)
  •  
4.
  •  
5.
  • Traylor, Matthew, et al. (author)
  • Genetic basis of lacunar stroke : a pooled analysis of individual patient data and genome-wide association studies
  • 2021
  • In: The Lancet Neurology. - 1474-4422. ; 20:5, s. 351-361
  • Journal article (peer-reviewed)abstract
    • Background: The genetic basis of lacunar stroke is poorly understood, with a single locus on 16q24 identified to date. We sought to identify novel associations and provide mechanistic insights into the disease. Methods: We did a pooled analysis of data from newly recruited patients with an MRI-confirmed diagnosis of lacunar stroke and existing genome-wide association studies (GWAS). Patients were recruited from hospitals in the UK as part of the UK DNA Lacunar Stroke studies 1 and 2 and from collaborators within the International Stroke Genetics Consortium. Cases and controls were stratified by ancestry and two meta-analyses were done: a European ancestry analysis, and a transethnic analysis that included all ancestry groups. We also did a multi-trait analysis of GWAS, in a joint analysis with a study of cerebral white matter hyperintensities (an aetiologically related radiological trait), to find additional genetic associations. We did a transcriptome-wide association study (TWAS) to detect genes for which expression is associated with lacunar stroke; identified significantly enriched pathways using multi-marker analysis of genomic annotation; and evaluated cardiovascular risk factors causally associated with the disease using mendelian randomisation. Findings: Our meta-analysis comprised studies from Europe, the USA, and Australia, including 7338 cases and 254 798 controls, of which 2987 cases (matched with 29 540 controls) were confirmed using MRI. Five loci (ICA1L-WDR12-CARF-NBEAL1, ULK4, SPI1-SLC39A13-PSMC3-RAPSN, ZCCHC14, ZBTB14-EPB41L3) were found to be associated with lacunar stroke in the European or transethnic meta-analyses. A further seven loci (SLC25A44-PMF1-BGLAP, LOX-ZNF474-LOC100505841, FOXF2-FOXQ1, VTA1-GPR126, SH3PXD2A, HTRA1-ARMS2, COL4A2) were found to be associated in the multi-trait analysis with cerebral white matter hyperintensities (n=42 310). Two of the identified loci contain genes (COL4A2 and HTRA1) that are involved in monogenic lacunar stroke. The TWAS identified associations between the expression of six genes (SCL25A44, ULK4, CARF, FAM117B, ICA1L, NBEAL1) and lacunar stroke. Pathway analyses implicated disruption of the extracellular matrix, phosphatidylinositol 5 phosphate binding, and roundabout binding (false discovery rate <0·05). Mendelian randomisation analyses identified positive associations of elevated blood pressure, history of smoking, and type 2 diabetes with lacunar stroke. Interpretation: Lacunar stroke has a substantial heritable component, with 12 loci now identified that could represent future treatment targets. These loci provide insights into lacunar stroke pathogenesis, highlighting disruption of the vascular extracellular matrix (COL4A2, LOX, SH3PXD2A, GPR126, HTRA1), pericyte differentiation (FOXF2, GPR126), TGF-β signalling (HTRA1), and myelination (ULK4, GPR126) in disease risk. Funding: British Heart Foundation.
  •  
6.
  • Ingala, Silvia, et al. (author)
  • Application of the ATN classification scheme in a population without dementia: Findings from the EPAD cohort.
  • 2021
  • In: Alzheimer's & dementia : the journal of the Alzheimer's Association. - : Wiley. - 1552-5279. ; 17:7, s. 1189-1204
  • Journal article (peer-reviewed)abstract
    • We classified non-demented European Prevention of Alzheimer's Dementia (EPAD) participants through the amyloid/tau/neurodegeneration (ATN) scheme and assessed their neuropsychological and imaging profiles.From 1500 EPAD participants, 312 were excluded. Cerebrospinal fluid cut-offs of 1000 pg/mL for amyloid beta (Aß)1-42 and 27 pg/mL for p-tau181 were validated using Gaussian mixture models. Given strong correlation of p-tau and t-tau (R2 =0.98, P<0.001), neurodegeneration was defined by age-adjusted hippocampal volume. Multinomial regressions were used to test whether neuropsychological tests and regional brain volumes could distinguish ATN stages.Age was 65 ± 7 years, with 58% females and 38% apolipoprotein E (APOE) ε4 carriers; 57.1% were A-T-N-, 32.5% were in the Alzheimer's disease (AD) continuum, and 10.4% suspected non-Alzheimer's pathology. Age and cerebrovascular burden progressed with biomarker positivity (P<0.001). Cognitive dysfunction appeared with T+. Paradoxically higher regional gray matter volumes were observed in A+T-N- compared to A-T-N- (P<0.001).In non-demented individuals along the AD continuum, p-tau drives cognitive dysfunction. Memory and language domains are affected in the earliest stages.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view