SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yaghootkar Hanieh) srt2:(2014)"

Sökning: WFRF:(Yaghootkar Hanieh) > (2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Scott, Robert A., et al. (författare)
  • Common Genetic Variants Highlight the Role of Insulin Resistance and Body Fat Distribution in Type 2 Diabetes, Independent of Obesity
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 63:12, s. 4378-4387
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to validate genetic variants as instruments for insulin resistance and secretion, to characterize their association with intermediate phenotypes, and to investigate their role in type 2 diabetes (T2D) risk among normal-weight, overweight, and obese individuals. We investigated the association of genetic scores with euglycemic-hyperinsulinemic clamp- and oral glucose tolerance test-based measures of insulin resistance and secretion and a range of metabolic measures in up to 18,565 individuals. We also studied their association with T2D risk among normal-weight, overweight, and obese individuals in up to 8,124 incident T2D cases. The insulin resistance score was associated with lower insulin sensitivity measured by M/I value (beta in SDs per allele [95% CI], -0.03 [-0.04, -0.01]; P = 0.004). This score was associated with lower BMI (-0.01 [-0.01, -0.0]; P = 0.02) and gluteofemoral fat mass (-0.03 [-0.05,-0.02; P = 1.4x10(-6) and with higher alanine transaminase (0.02 [0.01, 0.03]; P = 0.002) and gamma-glutamyl transferase (0.02 [0.01, 0.03]; P = 0.001). While the secretion score had a stronger association with T2D in leaner individuals (P-interaction = 0.001), we saw no difference in the association of the insulin resistance score with T2D among BMI or waist strata (P-interaction > 0.31). While insulin resistance is often considered secondary to obesity, the association of the insulin resistance score with lower BMI and adiposity and with incident T2D even among individuals of normal weight highlights the role of insulin resistance and ectopic fat distribution in T2D, independently of body size.
  •  
2.
  • Yaghootkar, Hanieh, et al. (författare)
  • Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease and type 2 diabetes.
  • 2014
  • Ingår i: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 63:12, s. 4369-77
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms that predispose to hypertension, coronary artery disease (CAD) and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy - a reduction in subcutaneous adipose tissue - it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, coronary artery disease and type 2 diabetes. We aimed to test the hypothesis that common alleles associated with insulin resistance also influence the wider clinical and biochemical profile of monogenic insulin resistance. We selected 19 common genetic variants associated with fasting insulin based measures of insulin resistance. We used hierarchical clustering and results from genome wide association studies of 8 non-disease outcomes of monogenic insulin resistance, to group these variants. We analysed genetic risk scores against disease outcomes including 12,171 T2D cases, 40,365 CAD cases and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle, form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (ß=0.018; p=4x10(-29)), lower HDL cholesterol (ß=-0.020; p=7x10(-37)), greater hepatic steatosis (ß=0.021; p=3x10(-4)) higher alanine transaminase (ß=0.002; p=3x10(-5)), lower SHBG (ß=-0.010; p=9x10(-13)) and lower adiponectin (ß=-0.015; p=2x10(-26)). The same risk alleles were associated with lower BMI (per-allele ß=-0.008; p=7x10(-8)), and increased visceral-to-subcutaneous adipose tissue ratio (ß=-0.015; p=6x10(-7)). Individuals carrying >= 17 fasting insulin raising alleles (5.5% population) were slimmer (0.30 kgm(-2)) but at increased risk of T2D (odds ratio [OR] 1.46, per-allele p=5x10(-13)), CAD (OR 1.12, per-allele p=1x10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg (per-allele p=2x10(-5)), and 0.67 mmHg (per-allele p=2x10(-4)), respectively, compared to individuals carrying <=9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the "metabolic syndrome" and point to reduced subcutaneous adiposity as a central mechanism.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy