SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Younesi Reza) srt2:(2020-2022)"

Sökning: WFRF:(Younesi Reza) > (2020-2022)

  • Resultat 1-10 av 51
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Aktekin, Burak, et al. (författare)
  • Concentrated LiFSI-€“Ethylene Carbonate Electrolytes and Their Compatibility with High-Capacity and High-Voltage Electrodes
  • 2022
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 5:1, s. 585-595
  • Tidskriftsartikel (refereegranskat)abstract
    • The unusual physical and chemical properties of electrolytes with excessive salt contents have resulted in rising interest in highly concentrated electrolytes, especially for their application in batteries. Here, we report strikingly good electrochemical performance in terms of conductivity and stability for a binary electrolyte system, consisting of lithium bis(fluorosulfonyl)imide (LiFSI) salt and ethylene carbonate (EC) solvent. The electrolyte is explored for different cell configurations spanning both high-capacity and high-voltage electrodes, which are well known for incompatibilities with conventional electrolyte systems: Li metal, Si/graphite composites, LiNi0.33Mn0.33Co0.33O2 (NMC111), and LiNi0.5Mn1.5O4 (LNMO). As compared to a LiTFSI counterpart as well as a common LP40 electrolyte, it is seen that the LiFSI:EC electrolyte system is superior in Li-metal–Si/graphite cells. Moreover, in the absence of Li metal, it is possible to use highly concentrated electrolytes (e.g., 1:2 salt:solvent molar ratio), and a considerable improvement on the electrochemical performance of NMC111-Si/graphite cells was achieved with the LiFSI:EC 1:2 electrolyte both at the room temperature and elevated temperature (55 °C). Surface characterization with scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) showed the presence of thicker surface film formation with the LiFSI-based electrolyte as compared to the reference electrolyte (LP40) for both positive and negative electrodes, indicating better passivation ability of such surface films during extended cycling. Despite displaying good stability with the NMC111 positive electrode, the LiFSI-based electrolyte showed less compatibility with the high-voltage spinel LNMO electrode (4.7 V vs Li+/Li).
  •  
2.
  • Aktekin, Burak, et al. (författare)
  • How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content
  • 2020
  • Ingår i: ACS Applied Energy Materials. - : AMER CHEMICAL SOC. - 2574-0962. ; 3:6, s. 6001-6013
  • Tidskriftsartikel (refereegranskat)abstract
    • The crystal structure of LiNi0.5O4 (LNMO) can adopt either low-symmetry ordered (Fd (3) over barm) or high-symmetry disordered (P4(3)32) space group depending on the synthesis conditions. A majority of published studies agree on superior electrochemical performance of disordered LNMO, but the underlying reasons for improvement remain unclear due to the fact that different thermal history of the samples affects other material properties such as oxygen content and particle morphology. In this study, ordered and disordered samples were prepared with a new strategy that renders samples with identical properties apart from their cation ordering degree. This was achieved by heat treatment of powders under pure oxygen atmosphere at high temperature with a final annealing step at 710 degrees C for both samples, followed by slow or fast cooling. Electrochemical testing showed that cation disordering improves the stability of material in charged (delithiated) state and mitigates the impedance rise in LNMO parallel to LTO (Li4Ti5O12) and LNMO parallel to Li cells. Through X-ray photoelectron spectroscopy (XPS), thicker surface films were observed on the ordered material, indicating more electrolyte side reactions. The ordered samples also showed significant changes in the Ni 2p XPS spectra, while the generation of ligand (oxygen) holes was observed in the Ni-O environment for both samples using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). Moreover, high-resolution transmission electron microscopy (HRTEM) images indicated that the ordered samples show a decrease in ordering near the particle surface after cycling and a tendency toward rock-salt-like phase transformations. These results show that the structural arrangement of Mn/Ni (alone) has an effect on the surface and "nearsurface" properties of LNMO, particularly in delithiated state, which is likely connected to the bulk electronic properties of this electrode material.
  •  
3.
  • Asfaw, Habtom D., Dr. 1986-, et al. (författare)
  • Bio-derived hard carbon nanosheets with high rate sodium-ion storage characteristics
  • 2022
  • Ingår i: Sustainable Materials and Technologies. - : Elsevier. - 2214-9937. ; 32
  • Tidskriftsartikel (refereegranskat)abstract
    • Biomass is a sustainable precursor of hard carbons destined for use in sodium-ion batteries. This study explores the synthesis of hard carbon nanosheets (HCNS) from oxidized cork and impact of synthesis temperature on the hard carbon characteristics. An increase in the carbonization temperature from 1000 to 1500 °C generally leads to lower BET specific surface areas (~55 to 20 m2 g−1) and d002 interlayer spacing (~ 4.0 to 3.7 Å). The effect of synthesis temperature is reflected in the initial coulombic efficiency (iCE) which increases from 72% at 1000 °C to 88% at 1500 °C, as a result of the decrease in surface area, and structural defects in the hard carbon as verified using Raman scattering. The impact of cycling temperature (~25, 30 and 55 °C) on the rate capability and long-term cycling is investigated using high precision coulometry cycler. For a galvanostatic test at 20 mA g−1 and ~ 25 °C, a reversible capacity of 276 mAh g−1 is observed with an iCE of ~88%. Increasing cycling temperature enhances the rate performance, but slightly lowers the iCE (~86% at 30 °C and ~ 81% at 55 °C). At 20 mA g−1, the reversible capacities obtained at 30 °C and 55 °C are on average ~ 260 and ~ 270 mAh g−1, respectively. For constant-current constant-voltage (CCCV) tests conducted at 30 °C, reversible capacities ranging from 252 to 268, 247–252, and 237–242 mAh g−1 can be obtained at 10, 100, and 1000 mA g−1, respectively. The respective capacities obtained at 55 °C are about 272–290, 260–279, and 234–265 mAh g−1 at 10, 100 and 1000 mA g−1. The applicability of the HCNS electrodes is eventually evaluated in full-cells with Prussian white cathodes, for which a discharge capacity of 152 mAh g−1 is obtained with an iCE of ~90%.
  •  
4.
  • Asfaw, Habtom Desta, Dr. 1986-, et al. (författare)
  • Facile synthesis of hard carbon microspheres from polyphenols for sodium-ion batteries : insight into local structure and interfacial kinetics
  • 2020
  • Ingår i: Materials Today Energy. - : Elsevier BV. - 2468-6069. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Hard carbons are the most promising negative active materials for sodium ion storage. In this work, a simple synthesis approach is proposed to produce hard carbon microspheres (CMSs) (with a mean diameter of ~1.3 μm) from resorcinol-formaldehyde precursors produced via acid-catalyzed polycondensation reaction. Samples prepared at 1200, 1400, and 1500 oC showed different electrochemical behavior in terms of reversible capacity, initial coulombic efficiency (iCE), and the mechanism of sodium ion storage. The specific capacity contributions from the flat voltage profile (<0.1 V) and the sloping voltage region (0.1–1 V) showed strong correlation to the local structure (and carbonization temperature) determined by the interlayer spacing (d002) and the Raman ID/IG ratio of the hard carbons (HCs) and the rate of cycling. Electrochemical tests indicated that the HC synthesized at 1500 oC performed best with an iCE of 85–89% and a reversible capacity of 300–340 mAh g−1 at 10 mA g−1, with the majority of charge stored below 0.1 V. The d002 and the ID/IG ratio for the sample were ~3.7 Å and ~1.27, respectively, parameters indicative of the ideal local structure in HCs required for optimum performance in sodium-ion cells. In addition, galvanostatic tests on three-electrode half-cells cells revealed that sodium metal plating occurred as cycling rates were increased beyond 80 mA g−1 leading to considerably high capacity and poor coulombic efficiency, a point that must be considered in full-cell batteries. Pairing the hard CMS electrodes with Prussian white positive electrode, a proof-of-concept cell could provide a specific capacity of almost 100 mAh g−1 maintained for more than 50 cycles with a nominal voltage of 3 V.
  •  
5.
  • Björklund, Erik, et al. (författare)
  • Sulfolane-Based Ethylene Carbonate-Free Electrolytes for LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 Batteries
  • 2020
  • Ingår i: Batteries & Supercaps. - : Wiley. - 2566-6223. ; 3:2, s. 201-207
  • Tidskriftsartikel (refereegranskat)abstract
    • Most electrolytes in today's lithium-ion batteries contain a large proportion of ethylene carbonate (EC) mixed with other alkyl carbonate-based solvents. EC has, however, been shown to be unstable at the high potentials at which several novel cathode materials are electrochemically active. Here, different mixtures of sulfolane and DMC are investigated in this context. The electrochemical stability is explored in addition to galvanostatic cycling of LiNi0.6Mn0.2Co0.2O2-Li4Ti5O12 (NMC-LTO) cells. The measurement of the ionic conductivity showed that mixing 25 % sulfolane into DMC improved the electrolyte properties as compared to pure DMC, making the conductivity similar to EC:DEC electrolytes and therefore fully functional. Moreover, the addition of sulfolane slightly enhanced the capacity retention, likely caused by formation of thinner and more stable surface layers on the LTO electrodes as determined by X-ray photoelectron spectroscopy (XPS). The cycling performance is especially improved for sulfolane-based electrolytes during cycling at sub-zero temperatures.
  •  
6.
  • Colbin, Lars Olow Simon, et al. (författare)
  • On the compatibility of high mass loading bismuth anodes for full-cell sodium-ion batteries
  • 2022
  • Ingår i: Dalton Transactions. - : Royal Society of Chemistry. - 1477-9226 .- 1477-9234. ; 51:44, s. 16852-16860
  • Tidskriftsartikel (refereegranskat)abstract
    • Metallic bismuth is here studied as an anode material for sodium-ion batteries. The details of electrochemical redox reactions, rate performance and cycled life were investigated using relatively high mass loading electrodes in two- and three-electrode full-cells. It demonstrated that the rate capability of bismuth anodes with high mass loading are not as good as indicated in previous literatures where low mass loading electrodes were used. It also indicated that the resistances causing a faltering rate performance may be connected to a loss in particle contact during desodiation. Efforts were also made to study the different electrochemical processes that occur during early cycles. Less advantageous characteristics of bismuth electrodes are also discussed. For example, several different electrolyte solutions were tested for compatibility with the bismuth system, where only glyme-based solutions seemed to facilitate robust cycling.
  •  
7.
  • Colbin, Simon, et al. (författare)
  • A Halogen‐Free and Flame‐Retardant Sodium Electrolyte Compatible with Hard Carbon Anodes
  • 2021
  • Ingår i: Advanced Materials Interfaces. - : John Wiley & Sons. - 2196-7350. ; 8:23
  • Tidskriftsartikel (refereegranskat)abstract
    • For sodium-ion batteries, two pressing issues concerning electrolytes are flammability and compatibility with hard carbon anode materials. Non-flammable electrolytes that are sufficiently stable against hard carbon have—to the authors’ knowledge—previously only been obtained by either the use of high salt concentrations or additives. Herein, the authors present a simple, fluorine-free, and flame-retardant electrolyte which is compatible with hard carbon: 0.38 m sodium bis(oxalato)borate (NaBOB) in triethyl phosphate (TEP). A variety of techniques are employed to characterize the physical properties of the electrolyte, and to evaluate the electrochemical performance in full-cell sodium-ion batteries. The results reveal that the conductivity is sufficient for battery operation, no significant self-discharge occurs, and a satisfactory passivation is enabled by the electrolyte. In fact, a mean discharge capacity of 107 ± 4 mAh g−1 is achieved at the 1005th cycle, using Prussian white cathodes and hard carbon anodes. Hence, the studied electrolyte is a promising candidate for use in sodium-ion batteries.
  •  
8.
  • Enterria, Marina, et al. (författare)
  • Driving the sodium-oxygen battery chemistry towards the efficient formation of discharge products : The importance of sodium superoxide quantification
  • 2022
  • Ingår i: Journal of Energy Challenges and Mechanics. - : Elsevier. - 2056-9386. ; 68, s. 709-720
  • Tidskriftsartikel (refereegranskat)abstract
    • Sodium-oxygen batteries (SOBs) have the potential to provide energy densities higher than the state-of the-art Li-ion batteries. However, controlling the formation of sodium superoxide (NaO2) as the sole discharge product on the cathode side is crucial to achieve durable and efficient SOBs. In this work, the discharge efficiency of two graphene-based cathodes was evaluated and compared with that of a commercial gas diffusion layer. The discharge products formed at the surface of these cathodes in a glyme-based electrolyte were carefully studied using a range of characterization techniques. NaO(2 )was detected as the main discharge product regardless of the specific cathode material while small amounts of Na2O2 center dot & nbsp;2H(2)O and carbonate-like side-products were detected by X-ray diffraction as well as by Raman and infrared spectroscopies. This work leverages the use of X-ray diffraction to determine the actual yield of NaO2 which is usually overlooked in this type of batteries. Thus, the proper quantification of the superoxide formed on the cathode surface is widely underestimated; even though is crucial for determining the efficiency of the battery while eliminating the parasitic chemistry in SOBs. Here, we develop an ex-situ analysis method to determine the amount of NaO2 generated upon discharge in SOBs by transmission X-ray diffraction and quantitative Rietveld analysis. This work unveils that the yield of NaO(2 )depends on the depth of discharge where high capacities lead to very low discharge efficiency, regardless of the used cathode. We anticipate that the methodology developed herein will provide a convenient diagnosis tool in future efforts to optimize the performance of the different cell components in SOBs. (C)& nbsp;2021 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press.& nbsp;
  •  
9.
  • Etman, Ahmed S., et al. (författare)
  • Acetonitrile-Based Electrolytes for Rechargeable Zinc Batteries
  • 2020
  • Ingår i: Energy technology. - : Wiley. - 2194-4288 .- 2194-4296. ; 8:9
  • Tidskriftsartikel (refereegranskat)abstract
    • Herein, Zn plating-stripping onto metallic Zn using a couple of acetonitrile (AN)-based electrolytes (0.5 mZn(TFSI)(2)/AN and 0.5 mZn(CF3SO3)(2)/AN) is studied. Both electrolytes show a reversible Zn plating/stripping over 1000 cycles at different applied current densities varying from 1.25 to 10 mA cm(-2). The overpotentials of Zn plating-stripping over 500 cycles at constant current of 1.25 and 10 mA cm(-2)are +/- 0.05 and +/- 0.2 V, respectively. X-ray photoelectron spectroscopy analysis reveals that no decomposition product is formed on the Zn surface. The anodic stability of four different current collectors of aluminum foil (Al), carbon-coated aluminum foil (C/Al), TiN-coated titanium foil (TiN/Ti), and multiwalled carbon nanotube paper (MWCNT-paper) is tested in both electrolytes. As a general trend, the current collectors have a higher anodic stability in Zn(TFSI)(2)/AN compared with Zn(CF3SO3)(2)/AN. The Al foil displays the highest anodic stability of approximate to 2.25 V versus Zn2+/Zn in Zn(TFSI)(2)/AN electrolyte. The TiN/Ti shows a comparable anodic stability with that of Al foil, but its anodic current density is higher than Al. The promising reversibility of the Zn plating/stripping combined with the anodic stability of Al and TiN/Ti current collectors paves the way for establishing highly reversible Zn-ion batteries.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 51
Typ av publikation
tidskriftsartikel (41)
doktorsavhandling (5)
forskningsöversikt (2)
annan publikation (1)
konferensbidrag (1)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (45)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Younesi, Reza (48)
Mogensen, Ronnie (12)
Naylor, Andrew J. (10)
Brandell, Daniel, 19 ... (9)
Edström, Kristina, P ... (7)
Duda, Laurent (7)
visa fler...
Armstrong, A Robert (5)
Hernández, Guiomar (4)
Berg, Erik (4)
Kullgren, Jolla, 197 ... (3)
Mindemark, Jonas (3)
Asfaw, Habtom Desta, ... (3)
Gond, Ritambhara (3)
Johansson, Patrik, 1 ... (2)
Aktekin, Burak (2)
Valvo, Mario (2)
Hahlin, Maria (2)
Lacey, Matthew J. (2)
Björklund, Erik (2)
Forslund, Ola Kenji (2)
Nocerino, Elisabetta (2)
Matsubara, Nami (2)
Tai, Cheuk-Wai, 1973 ... (1)
Forsberg, Kerstin, 1 ... (1)
Hosseinaei, Omid (1)
Tai, Cheuk-Wai (1)
Sun, Junliang (1)
Ahmadi, Majid (1)
Svärd, Michael, Doce ... (1)
Bechelany, Mikhael (1)
Sen, S. (1)
Zipprich, Wolfgang (1)
Brant, William (1)
Marzano, Fernanda (1)
Massel, Felix (1)
Edström, Kristina, P ... (1)
Månsson, Martin, As. ... (1)
Eriksson, Henrik (1)
Meeus, Marcel (1)
Winter, Martin (1)
Hedman, Jonas (1)
Nyholm, Leif, 1961- (1)
Sångeland, Christofe ... (1)
Björefors, Fredrik, ... (1)
Petranikova, Martina ... (1)
Kotronia, Antonia (1)
Asfaw, Habtom D., Dr ... (1)
Chhowalla, Manish (1)
Sharma, Neeraj (1)
Sassa, Yasmine, 1981 (1)
visa färre...
Lärosäte
Uppsala universitet (48)
Chalmers tekniska högskola (5)
Stockholms universitet (4)
Kungliga Tekniska Högskolan (2)
RISE (1)
Språk
Engelska (50)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (50)
Teknik (7)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy