SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Yu Di 1985 ) srt2:(2019)"

Sökning: WFRF:(Yu Di 1985 ) > (2019)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
2.
  • Fotaki, Grammatiki, 1988- (författare)
  • Allogeneic dendritic cells as adjuvants in cancer immunotherapy
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In recent years, immunotherapeutic approaches have achieved remarkable successes through checkpoint blockade antibodies, advances in the use of chimeric antigen receptor (CAR) T cells and new insights into the immunosuppressive role of the tumor microenvironment (TME). Through the advances, the role of cancer vaccines based on ex vivo manipulated autologous dendritic cells (DC) has been challenged. The main aim of DC-based vaccination is the induction of tumor-specific T-cell responses through presentation of tumor-associated antigens. However, this process has been found to be highly dependent on the ability of the injected vaccine-DCs to activate endogenous bystander DCs.In this work, we examined the feasibility of having an allogeneic source of vaccine-DCs (alloDCs), not for direct antigen-presentation to T cells but as an immune primer aiming to activate bystander DCs. In paper I, we treated alloDCs with a T helper cell type 1 (Th1)-promoting maturation cocktail alone or combined with a replication-deficient, infection-enhanced adenoviral vector (Ad5M) as a potential gene delivery vehicle. We found that mature pro-inflammatory alloDCs, either non-transduced or transduced, created a cytokine- and chemokine-enriched milieu in vitro, and promoted the activation of co-cultured immune cells, including cytolytic NK cells, from unrelated donors. The emerged milieu induced the maturation of bystander DCs, which cross-presented antigens from their environment to autologous antigen-specific T cells. In paper II, we found that alloDCs promoted the migration of murine immune cells both to the site of injection and to the draining lymph node. When Ad5M was used for the delivery of the melanoma-associated antigen gp100, we found that gp100-expressing alloDCs were able to control tumor growth through gp100-specific T-cell responses and alteration of the TME. In paper III, we found that co-administration of alloDCs with an adenoviral vector encoding for HPV-antigens is effective in controlling the growth of HPV-related tumors and this may depend on a cross-talk between alloDCs and NK cells which leads to further recruitment of immune cells into the TME. In paper IV, we observed that concomitant targeting of immune checkpoint receptors or co-stimulatory molecules results in synergistic therapeutic effects in a murine colorectal model.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy