SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Zhang Yiran) srt2:(2017)"

Sökning: WFRF:(Zhang Yiran) > (2017)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Yafeng, 1985, et al. (författare)
  • Inhibition of autophagy prevents irradiation-induced neural stem and progenitor cell death in the juvenile mouse brain
  • 2017
  • Ingår i: Cell Death & Disease. - : Springer Science and Business Media LLC. - 2041-4889. ; 8:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Radiotherapy is an effective tool in the treatment of malignant brain tumors. However, damage to brain stem and progenitor cells constitutes a major problem and is associated with long-term side effects. Autophagy has been shown to be involved in cell death, and the purpose of this study was to evaluate the effect of autophagy inhibition on neural stem and progenitor cell death in the juvenile brain. Ten-day-old selective Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6Gy dose of whole-brain irradiation. Cell death and proliferation as well as microglia activation and inflammation were evaluated in the dentate gyrus of the hippocampus and in the cerebellum at 6 h after irradiation. We found that cell death was reduced in Atg7 KO compared with WT mice at 6 h after irradiation. The number of activated microglia increased significantly in both the dentate gyrus and the cerebellum of WT mice after irradiation, but the increase was lower in the Atg7 KO mice. The levels of proinflammatory cytokines and chemokines decreased, especially in the cerebellum, in the Atg7 KO group. These results suggest that autophagymight be a potential target for preventing radiotherapy-induced neural stem and progenitor cell death and its associated long-term side effects.
  •  
2.
  • Zhou, Kai, et al. (författare)
  • Lithium protects hippocampal progenitors, cognitive performance and hypothalamus-pituitary function after irradiation to the juvenile rat brain
  • 2017
  • Ingår i: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 8:21, s. 34111-34127
  • Tidskriftsartikel (refereegranskat)abstract
    • Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation.
  •  
3.
  • Zou, Zhengping, et al. (författare)
  • Dominant flow structure in the squealer tip gap and its impact on turbine aerodynamic performance
  • 2017
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 138, s. 167-184
  • Tidskriftsartikel (refereegranskat)abstract
    • Tip leakage loss reduction is important for improving the turbine aerodynamic performance. In this paper, the flow field of a transonic high pressure turbine stage with a squealer tip is numerically investigated. The physical mechanism of flow structures inside the cavity that control leakage loss is presented, which is obtained by analyzing the evolution of the flow structures and its influence on the leakage flow rate and momentum at the gap outlet. The impacts of the aerodynamic conditions and geometric parameters, such as blade loading distributions in the tip region, squealer heights, and gap heights, on leakage loss reduction are also discussed. The results show that the scraping vortex generated inside the cavity is the dominant flow structure affecting turbine aerodynamic performance. An aero-labyrinth liked sealing effect is formed by the scraping vortex, which increases the energy dissipation of the leakage flow inside the gap and reduces the equivalent flow area at the gap outlet. The discharge coefficient of the squealer tip is therefore decreased, and the tip leakage loss is reduced accordingly. Variations in the blade loading distribution in the tip region and the squealer geometry change the scraping vortex characteristics, such as the size, intensity, and its position inside the cavity, resulting in a different controlling effect on leakage loss. By reasonable blade tip loading distribution and squealer tip geometry for organizing scraping vortex characteristics, the squealer tip can improve the turbine aerodynamic performance effectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy