SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(de Eyto Elvira) srt2:(2021)"

Sökning: WFRF:(de Eyto Elvira) > (2021)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Attermeyer, Katrin, et al. (författare)
  • Carbon dioxide fluxes increase from day to night across European streams
  • 2021
  • Ingår i: Communications Earth & Environment. - : Springer Nature. - 2662-4435. ; 2:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Globally, inland waters emit over 2 Pg of carbon per year as carbon dioxide, of which the majority originates from streams and rivers. Despite the global significance of fluvial carbon dioxide emissions, little is known about their diel dynamics. Here we present a large-scale assessment of day- and night-time carbon dioxide fluxes at the water-air interface across 34 European streams. We directly measured fluxes four times between October 2016 and July 2017 using drifting chambers. Median fluxes are 1.4 and 2.1mmolm(-2) h(-1) at midday and midnight, respectively, with night fluxes exceeding those during the day by 39%. We attribute diel carbon dioxide flux variability mainly to changes in the water partial pressure of carbon dioxide. However, no consistent drivers could be identified across sites. Our findings highlight widespread day-night changes in fluvial carbon dioxide fluxes and suggest that the time of day greatly influences measured carbon dioxide fluxes across European streams. Diel patterns can greatly impact total stream carbon dioxide emissions, with 39% greater carbon dioxide flux during the night-time relative to the day-time, according to a study of 34 streams across Europe.
  •  
2.
  • Dokulil, Martin T., et al. (författare)
  • Increasing maximum lake surface temperature under climate change
  • 2021
  • Ingår i: Climatic Change. - : Springer Nature. - 0165-0009 .- 1573-1480. ; 165:3-4
  • Tidskriftsartikel (refereegranskat)abstract
    • Annual maximum lake surface temperature influences ecosystem structure and function and, in particular, the rates of metabolic activities, species survival and biogeography. Here, we evaluated 50 years of observational data, from 1966 to 2015, for ten European lakes to quantify changes in the annual maximum surface temperature and the duration above a potentially critical temperature of 20 degrees C. Our results show that annual maximum lake surface temperature has increased at an average rate of +0.58 degrees C decade(-1) (95% confidence interval 0.18), which is similar to the observed increase in annual maximum air temperature of +0.42 degrees C decade(-1) (95% confidence interval 0.28) over the same period. Increments in lake maximum temperature among the ten lakes range from +0.1 in the west to +1.9 degrees C decade(-1) in the east. Absolute maximum lake surface water temperatures were reached in Worthersee, 27.5 degrees C, and Neusiedler See, 31.7 degrees C. Periods exceeding a critical temperature of 20 degrees C each year became two to six times longer than the respective average (6 to 93). The depth at which water temperature exceeded 20 degrees C increased from less than 1 to more than 6 m in Mondsee, Austria, over the 50 years studied. As a consequence, the habitable environment became increasingly restricted for many organisms that are adapted to historic conditions.
  •  
3.
  • Doubek, Jonathan P., et al. (författare)
  • The extent and variability of storm-induced temperature changes in lakes measured with long-term and high-frequency data
  • 2021
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 66:5, s. 1979-1992
  • Tidskriftsartikel (refereegranskat)abstract
    • The intensity and frequency of storms are projected to increase in many regions of the world because of climate change. Storms can alter environmental conditions in many ecosystems. In lakes and reservoirs, storms can reduce epilimnetic temperatures from wind-induced mixing with colder hypolimnetic waters, direct precipitation to the lake's surface, and watershed runoff. We analyzed 18 long-term and high-frequency lake datasets from 11 countries to assess the magnitude of wind- vs. rainstorm-induced changes in epilimnetic temperature. We found small day-to-day epilimnetic temperature decreases in response to strong wind and heavy rain during stratified conditions. Day-to-day epilimnetic temperature decreased, on average, by 0.28 degrees C during the strongest windstorms (storm mean daily wind speed among lakes: 6.7 +/- 2.7 m s(-1), 1 SD) and by 0.15 degrees C after the heaviest rainstorms (storm mean daily rainfall: 21.3 +/- 9.0 mm). The largest decreases in epilimnetic temperature were observed >= 2 d after sustained strong wind or heavy rain (top 5(th) percentile of wind and rain events for each lake) in shallow and medium-depth lakes. The smallest decreases occurred in deep lakes. Epilimnetic temperature change from windstorms, but not rainstorms, was negatively correlated with maximum lake depth. However, even the largest storm-induced mean epilimnetic temperature decreases were typically <2 degrees C. Day-to-day temperature change, in the absence of storms, often exceeded storm-induced temperature changes. Because storm-induced temperature changes to lake surface waters were minimal, changes in other limnological variables (e.g., nutrient concentrations or light) from storms may have larger impacts on biological communities than temperature changes.
  •  
4.
  • Kornijów, Ryszard, et al. (författare)
  • Distribution patterns of epiphytic reed-associated macroinvertebrate communities across European shallow lakes
  • 2021
  • Ingår i: Science of the Total Environment. - : Elsevier BV. - 0048-9697. ; 760
  • Tidskriftsartikel (refereegranskat)abstract
    • So far, research on plant-associated macroinvertebrates, even if conducted on a large number of water bodies, has mostly focused on a relatively small area, permitting limited conclusions to be drawn regarding potentially broader geographic effects, including climate. Some recent studies have shown that the composition of epiphytic communities may differ considerably among climatic zones. To assess this phenomenon, we studied macroinvertebrates associated with the common reed Phragmites australis (Cav.) Trin. ex Steud in 46 shallow lakes using a common protocol. The lakes, located in nine countries, covered almost the entire European latitudinal range (from <48°N to 61°N) and captured much of the variability in lake size and nutrient content in the region. A Poisson Generalized Linear Mixed Model (GLMM) showed the number of macroinvertebrate epiphytic taxa to be negatively associated with water conductivity and positively associated with medium ice cover duration (approximately 1 month). A Gamma GLMM showed a positive effect of chlorophyll a on the density of macroinvertebrates, and a significantly greater density in lakes located at the lowest and highest latitudes. Individual taxa responded differently to lake environmental conditions across climate zones. Chironomidae dominated in all climate zones, but their contribution to total density decreased with increasing latitude, with progressively greater proportions of Naidinae, Asellidae, Ephemeroptera and Trichoptera. Our study demonstrates that epiphytic macroinvertebrate fauna, even when analyzed at low taxonomic resolution, exhibits clear differences in diversity, relative abundance of individual taxa and total density, shaped both by geographic and anthropogenic variables. The results were discussed in the context of climate change. To our best knowledge this is the first study to examine epiphytic fauna carried out on a European scale.
  •  
5.
  • Seifert-Dähnn, Isabel, et al. (författare)
  • Costs and benefits of automated high-frequency environmental monitoring - The case of lake water management
  • 2021
  • Ingår i: Journal of Environmental Management. - : Elsevier. - 0301-4797 .- 1095-8630. ; 285
  • Tidskriftsartikel (refereegranskat)abstract
    • Freshwater lakes are dynamic ecosystems and provide multiple ecosystem services to humans. Sudden changes in lake environmental conditions such as cyanobacterial blooms can negatively impact lake usage. Automated high frequency monitoring (AHFM) systems allow the detection of short-lived extreme and unpredictable events and enable lake managers to take mitigation actions earlier than if basing decisions on conventional monitoring programmes. In this study a cost-benefit approach was used to compare the costs of implementing and running an AHFM system with its potential benefits for three case study lakes. It was shown that AHFM can help avoid human health impacts, lost recreation opportunities, and revenue losses for livestock, aquaculture and agriculture as well as reputational damages for drinking water treatment. Our results showed that the largest benefits of AHFM can be expected in prevention of human health impacts and reputational damages. The potential benefits of AHFM, however, do not always outweigh installation and operation costs. While for Lake Kinneret (Israel) over a 10-year period, the depreciated total benefits are higher than the depreciated total costs, this is not the case for Lough Gara (Ireland). For Lake Ma?laren in Sweden it would depend on the configuration of the AHFM system, as well as on how the benefits are calculated. In general, the higher the frequency and severity of changes in lake environmental conditions associated with detrimental consequences for humans and the higher the number of lake users, the more likely it is that the application of an AHFM system is financially viable.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy