SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(van der Werf D. P.) srt2:(2020)"

Sökning: WFRF:(van der Werf D. P.) > (2020)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, PM, et al. (författare)
  • ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries
  • 2020
  • Ingår i: Translational psychiatry. - : Springer Science and Business Media LLC. - 2158-3188. ; 10:1, s. 100-
  • Tidskriftsartikel (refereegranskat)abstract
    • This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of “big data” (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA’s activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
  •  
2.
  • Ades, M., et al. (författare)
  • Global Climate : in State of the climate in 2019
  • 2020
  • Ingår i: Bulletin of The American Meteorological Society - (BAMS). - : American Meteorological Society. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Ades, M., et al. (författare)
  • GLOBAL CLIMATE
  • 2020
  • Ingår i: BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY. - 0003-0007 .- 1520-0477. ; 101:8, s. S17-S127
  • Tidskriftsartikel (refereegranskat)
  •  
4.
  • Kim, B. H., et al. (författare)
  • Development of a PbWO4 Detector for Single-Shot Positron Annihilation Lifetime Spectroscopy at the GBAR Experiment
  • 2020
  • Ingår i: Acta Physica Polonica. A. - 0587-4246 .- 1898-794X. ; 137:2, s. 122-125
  • Tidskriftsartikel (refereegranskat)abstract
    • We have developed a PbWO4 (PWO) detector with a large dynamic range to measure the intensity of a positron beam and the absolute density of the ortho-positronium (o-Ps) cloud it creates. A simulation study shows that a setup based on such detectors may be used to determine the angular distribution of the emission and reflection of o-Ps to reduce part of the uncertainties of the measurement. These will allow to improve the precision in the measurement of the cross-section for the (anti)hydrogen formation by (anti)proton-positronium charge exchange and to optimize the yield of antihydrogen ion which is an essential parameter in the GBAR experiment.
  •  
5.
  • Niang, S., et al. (författare)
  • Accumulation of Positrons from a LINAC Based Source
  • 2020
  • Ingår i: Acta Physica Polonica. A. - 0587-4246 .- 1898-794X. ; 137:2, s. 164-166
  • Tidskriftsartikel (refereegranskat)abstract
    • The GBAR experiment aims to measure the gravitational acceleration of antihydrogen (H) over bar. It will use (H) over bar (+) ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one (H) over bar (+). We present the first results on the positron accumulation, reaching 3.8 +/- 0.4x10(8) e(+) collected in 560 s.
  •  
6.
  • Ahmadi, M., et al. (författare)
  • Investigation of the fine structure of antihydrogen
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 578:7795, s. 375-380
  • Tidskriftsartikel (refereegranskat)abstract
    • At the historic Shelter Island Conference on the Foundations of Quantum Mechanics in 1947, Willis Lamb reported an unexpected feature in the fine structure of atomic hydrogen: a separation of the 2S(1/2) and 2P(1/2) states(1). The observation of this separation, now known as the Lamb shift, marked an important event in the evolution of modern physics, inspiring others to develop the theory of quantum electrodynamics(2-5). Quantum electrodynamics also describes antimatter, but it has only recently become possible to synthesize and trap atomic antimatter to probe its structure. Mirroring the historical development of quantum atomic physics in the twentieth century, modern measurements on anti-atoms represent a unique approach for testing quantum electrodynamics and the foundational symmetries of the standard model. Here we report measurements of the fine structure in the n = 2 states of antihydrogen, the antimatter counterpart of the hydrogen atom. Using optical excitation of the 1S-2P Lyman-alpha transitions in antihydrogen(6), we determine their frequencies in a magnetic field of 1 tesla to a precision of 16 parts per billion. Assuming the standard Zeeman and hyperfine interactions, we infer the zero-field fine-structure splitting (2P(1/2)-2P(3/2)) in antihydrogen. The resulting value is consistent with the predictions of quantum electrodynamics to a precision of 2 per cent. Using our previously measured value of the 1S-2S transition frequency(6,7), we find that the classic Lamb shift in antihydrogen (2S(1/2)-2P(1/2) splitting at zero field) is consistent with theory at a level of 11 per cent. Our observations represent an important step towards precision measurements of the fine structure and the Lamb shift in the antihydrogen spectrum as tests of the charge-parity-time symmetry(8) and towards the determination of other fundamental quantities, such as the antiproton charge radius(9,10), in this antimatter system. Precision measurements of the 1S-2P transition in antihydrogen that take into account the standard Zeeman and hyperfine effects confirm the predictions of quantum electrodynamics.
  •  
7.
  • Auffray, C., et al. (författare)
  • COVID-19 and beyond : a call for action and audacious solidarity to all the citizens and nations, it is humanity’s fight
  • 2020
  • Ingår i: F1000 Research. - : F1000 Research Ltd. - 2046-1402. ; 9, s. 1130-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2) belongs to a subgroup of coronaviruses rampant in bats for centuries. It caused the coronavirus disease 2019 (COVID-19) pandemic. Most patients recover, but a minority of severe cases experience acute respiratory distress or an inflammatory storm devastating many organs that can lead to patient death. The spread of SARS-CoV-2 was facilitated by the increasing intensity of air travel, urban congestion and human contact during the past decades. Until therapies and vaccines are available, tests for virus exposure, confinement and distancing measures have helped curb the pandemic. Vision: The COVID-19 pandemic calls for safeguards and remediation measures through a systemic response. Self-organizing initiatives by scientists and citizens are developing an advanced collective intelligence response to the coronavirus crisis. Their integration forms Olympiads of Solidarity and Health. Their ability to optimize our response to COVID-19 could serve as a model to trigger a global metamorphosis of our societies with far-reaching consequences for attacking fundamental challenges facing humanity in the 21st century. Mission: For COVID-19 and these other challenges, there is no alternative but action. Meeting in Paris in 2003, we set out to "rethink research to understand life and improve health." We have formed an international coalition of academia and industry ecosystems taking a systems medicine approach to understanding COVID-19 by thoroughly characterizing viruses, patients and populations during the pandemic, using openly shared tools. All results will be publicly available with no initial claims for intellectual property rights. This World Alliance for Health and Wellbeing will catalyze the creation of medical and health products such as diagnostic tests, drugs and vaccines that become common goods accessible to all, while seeking further alliances with civil society to bridge with socio-ecological and technological approaches that characterise urban systems, for a collective response to future health emergencies. 
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy