SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "db:Swepub ;conttype:(scientificother);lar1:(mdh);pers:(Funk Peter)"

Sökning: db:Swepub > Övrigt vetenskapligt/konstnärligt > Mälardalens universitet > Funk Peter

  • Resultat 1-10 av 27
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ahmed, Mobyen Uddin (författare)
  • A case-based multi-modal clinical system for stress management
  • 2010
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A difficult issue in stress management is to use biomedical sensor signal in the diagnosis and treatment of stress. Clinicians often make their diagnosis and decision based on manual inspection of physiological signals such as, ECG, heart rate, finger temperature etc. However, the complexity associated with manual analysis and interpretation of the signals makes it difficult even for experienced clinicians. Today the diagnosis and decision is largely dependent on how experienced the clinician is interpreting the measurements.  A computer-aided decision support system for diagnosis and treatment of stress would enable a more objective and consistent diagnosis and decisions. A challenge in the field of medicine is the accuracy of the system, it is essential that the clinician is able to judge the accuracy of the suggested solutions. Case-based reasoning systems for medical applications are increasingly multi-purpose and multi-modal, using a variety of different methods and techniques to meet the challenges of the medical domain. This research work covers the development of an intelligent clinical decision support system for diagnosis, classification and treatment in stress management. The system uses a finger temperature sensor and the variation in the finger temperature is one of the key features in the system. Several artificial intelligence techniques have been investigated to enable a more reliable and efficient diagnosis and treatment of stress such as case-based reasoning, textual information retrieval, rule-based reasoning, and fuzzy logic. Functionalities and the performance of the system have been validated by implementing a research prototype based on close collaboration with an expert in stress. The case base of the implemented system has been initiated with 53 reference cases classified by an experienced clinician. A case study also shows that the system provides results close to a human expert. The experimental results suggest that such a system is valuable both for less experienced clinicians and for experts where the system may function as a second option.
  •  
2.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • A Hybrid Case-Based System in Stress Diagnosis and Treatment
  • 2012
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Computer-aided decision support systems play anincreasingly important role in clinical diagnosis and treatment.However, they are difficult to build for domains where thedomain theory is weak and where different experts differ indiagnosis. Stress diagnosis and treatment is an example of such adomain. This paper explores several artificial intelligencemethods and techniques and in particular case-based reasoning,textual information retrieval, rule-based reasoning, and fuzzylogic to enable a more reliable diagnosis and treatment of stress.The proposed hybrid case-based approach has been validated byimplementing a prototype in close collaboration with leadingexperts in stress diagnosis. The obtained sensitivity, specificityand overall accuracy compared to an expert are 92%, 86% and88% respectively.
  •  
3.
  • Ahmed, Mobyen Uddin, 1976- (författare)
  • A Multimodal Approach for Clinical Diagnosis and Treatment
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • A computer-aided Clinical Decision Support System (CDSS) for diagnosis and treatment often plays a vital role and brings essential benefits for clinicians. Such a CDSS could function as an expert for a less experienced clinician or as a second option/opinion of an experienced clinician to their decision making task. Nevertheless, it has been a real challenge to design and develop such a functional system where accuracy of the system performance is an important issue. This research work focuses on development of intelligent CDSS based on a multimodal approach for diagnosis, classification and treatment in medical domains i.e. stress and post-operative pain management domains. Several Artificial Intelligence (AI) techniques such as Case-Based Reasoning (CBR), textual Information Retrieval (IR), Rule-Based Reasoning (RBR), Fuzzy Logic and clustering approaches have been investigated in this thesis work. Patient’s data i.e. their stress and pain related information are collected from complex data sources for instance, finger temperature measurements through sensor signals, pain measurements using a Numerical Visual Analogue Scale (NVAS), patient’s information from text and multiple choice questionnaires. The proposed approach considers multimedia data management to be able to use them in CDSSs for both the domains. The functionalities and performance of the systems have been evaluated based on close collaboration with experts and clinicians of the domains. In stress management, 68 measurements from 46 subjects and 1572 patients’ cases out of ≈4000 in post-operative pain have been used to design, develop and validate the systems. In the stress management domain, besides the 68 measurement cases, three trainees and one senior clinician also have been involved in order to conduct the experimental work. The result from the evaluation shows that the system reaches a level of performance close to the expert and better than the senior and trainee clinicians. Thus, the proposed CDSS could be used as an expert for a less experienced clinician (i.e. trainee) or as a second option/opinion for an experienced clinician (i.e. senior) to their decision making process in stress management. In post-operative pain treatment, the CDSS retrieves and presents most similar cases (e.g. both rare and regular) with their outcomes to assist physicians. Moreover, an automatic approach is presented in order to identify rare cases and 18% of cases from the whole cases library i.e. 276 out of 1572 are identified as rare cases by the approach. Again, among the rare cases (i.e. 276), around 57.25% of the cases are classified as ‘unusually bad’ i.e. the average pain outcome value is greater or equal to 5 on the NVAS scale 0 to 10. Identification of rear cases is an important part of the PAIN OUT project and can be used to improve the quality of individual pain treatment.
  •  
4.
  • Ahmed, Mobyen Uddin, et al. (författare)
  • Case-Based Reasoning for Medical and Industrial Decision Support Systems
  • 2010
  • Ingår i: Successful Case-based Reasoning Applications. - Berlin, Heidelberg : Springer. - 9783642140778 ; , s. 7-52
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • The amount of medical and industrial experience and knowledge is rapidly growing and it is almost impossible to be up to date with everything. The demand of decision support system (DSS) is especially important in domains where experience and knowledge grow rapidly. However, traditional approaches to DSS are not always easy to adapt to a flow of new experience and knowledge and may also show a limitation in areas with a weak domain theory. This chapter explores the functionalities of Case-Based Reasoning (CBR) to facilitate experience reuse both in clinical and in industrial decision making tasks. Examples from the field of stress medicine and condition monitoring in industrial robots are presented here to demonstrate that the same approach assists both for clinical applications as well as for decision support for engineers. In the both domains, DSS deals with sensor signal data and integrate other artificial intelligence techniques into the CBR system to enhance the performance in a number of different aspects. Textual information retrieval, Rule-based Reasoning (RBR), and fuzzy logic are combined together with CBR to offer decision support to clinicians for a more reliable and efficient management of stress. Agent technology and wavelet transformations are applied with CBR to diagnose audible faults on industrial robots and to package such a system. The performance of the CBR systems have been validated and have shown to be useful in solving such problems in both of these domains.
  •  
5.
  • Ahmed, Mobyen Uddin, 1976-, et al. (författare)
  • Mining Rare Cases in Post-Operative Pain by Means of Outlier Detection
  • 2011
  • Ingår i: IEEE Symposium on Signal Processing and Information Technology (ISSPIT) 2011. - : IEEE. - 9781467307536 ; , s. 35-41
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Rare cases are often interesting for healthprofessionals, physicians, researchers and clinicians in order toreuse and disseminate experiences in healthcare. However,mining, i.e. identification of rare cases in electronic patientrecords, is non-trivial for information technology. This paperinvestigates a number of well-known clustering algorithms andfinally applies a 2nd order clustering approach by combining theFuzzy C-means algorithm with the Hierarchical one. Theapproach is used in order to identify rare cases from 1572patient cases in the domain of post-operative pain management.The results show that the approach enables identification of rarecases in the domain of post-operative pain management and 18%of cases are identified as rare case.
  •  
6.
  • Barua, Shaibal, 1982- (författare)
  • Intelligent Driver Mental State Monitoring System Using Physiological Sensor Signals
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Driving a vehicle involves a series of events, which are related to and evolve with the mental state (such as sleepiness, mental load, and stress) of the driv- er. These states are also identified as causal factors of critical situations that can lead to road accidents and vehicle crashes. These driver impairments need to be detected and predicted in order to reduce critical situations and road accidents. In the past years, physiological signals have become conven- tional measures in driver impairment research. Physiological signals have been applied in various studies to identify different levels of mental load, sleepiness, and stress during driving.This licentiate thesis work has investigated several artificial intelligence algorithms for developing an intelligent system to monitor driver mental state using physiological signals. The research aims to measure sleepiness and mental load using Electroencephalography (EEG). EEG signals, if pro- cessed correctly and efficiently, have potential to facilitate advanced moni- toring of sleepiness, mental load, fatigue, stress etc. However, EEG signals can be contaminated with unwanted signals, i.e., artifacts. These artifacts can lead to serious misinterpretation. Therefore, this work investigates EEG arti- fact handling methods and propose an automated approach for EEG artifact handling. Furthermore, this research has also investigated how several other physiological parameters (Heart Rate (HR) and Heart Rate Variability (HRV) from the Electrocardiogram (ECG), Respiration Rate, Finger Tem- perature (FT), and Skin Conductance (SC)) to quantify drivers’ stress. Dif- ferent signal processing methods have been investigated to extract features from these physiological signals. These features have been extracted in the time domain, in the frequency domain as well as in the joint time-frequency domain using wavelet analysis. Furthermore, data level signal fusion has been proposed using Multivariate Multiscale Entropy (MMSE) analysis by combining five physiological sensor signals. Primarily Case-Based Reason- ing (CBR) has been applied for drivers’ mental state classification, but other Artificial intelligence (AI) techniques such as Fuzzy Logic, Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been investigat- ed as well.For drivers’ stress classification, using the CBR and MMSE approach, the system has achieved 83.33% classification accuracy compared to a human expert. Moreover, three classification algorithms i.e., CBR, an ANN, and a SVM were compared to classify drivers’ stress. The results show that CBR has achieved 80% and 86% accuracy to classify stress using finger tempera- ture and heart rate variability respectively, while ANN and SVM reached an accuracy of less than 80%. 
  •  
7.
  • Barua, Shaibal, 1982- (författare)
  • Multivariate Data Analytics to Identify Driver’s Sleepiness, Cognitive load, and Stress
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Driving a vehicle in a dynamic traffic environment requires continuous adaptation of a complex manifold of physiological and cognitive activities. Impaired driving due to, for example, sleepiness, inattention, cognitive load or stress, affects one’s ability to adapt, predict and react to upcoming traffic events. In fact, human error has been found to be a contributing factor in more than 90% of traffic crashes. Unfortunately, there is no robust, objective ground truth for determining a driver’s state, and researchers often revert to using subjective self-rating scales when assessing level of sleepiness, cognitive load or stress. Thus, the development of better tools to understand, measure and monitor human behaviour across diverse scenarios and states is crucial. The main objective of this thesis is to develop objective measures of sleepiness, cognitive load and stress, which can later be used as research tools, either to benchmark unobtrusive sensor solutions or when investigating the influence of other factors on sleepiness, cognitive load, and stress.This thesis employs multivariate data analysis using machine learning to detect and classify different driver states based on physiological data. The reason for using rather intrusive sensor data, such as electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), skin conductance, finger temperature, and respiration is that these methods can be used to analyse how the brain and body respond to internal and external changes, including those that do not generate overt behaviour. Moreover, the use of physiological data is expected to grow in importance when investigating human behaviour in partially automated vehicles, where active driving is replaced by passive supervision.Physiological data, especially the EEG is sensitive to motion artifacts and noise, and when recorded in naturalistic environments such as driving, artifacts are unavoidable. An automatic EEG artifact handling method ARTE (Automated aRTifacts handling in EEG) was therefore developed. When used as a pre-processing step in the classification of driver sleepiness, ARTE increased classification performance by 5%. ARTE is data-driven and does not rely on additional reference signals or manually defined thresholds, making it well suited for use in dynamic settings where unforeseen and rare artifacts are commonly encountered. In addition, several machine-learning algorithms have been developed for sleepiness, cognitive load, and stress classification. Regarding sleepiness classification, the best achieved accuracy was achieved using a Support Vector Machine (SVM) classifier. For multiclass, the obtained accuracy was 79% and for binary class it was 93%. A subject-dependent classification exhibited a 10% improvement in performance compared to the subject-independent classification, suggesting that much can be gained by using personalized classifiers. Moreover, by embedding contextual information, classification performance improves by approximately 5%. In regard to cognitive load classification, a 72% accuracy rate was achieved using a random forest classifier. Combining features from several data sources may improve performance, and indeed, we observed classification performance improvement by 10%-20% compared to using features from a single data source. To classify drivers’ stress, using the Case-based reasoning (CBR) and data fusion approach, the system achieved an 83.33% classification accuracy rate.This thesis work encourages the use of multivariate data for detecting and classifying driver states, including sleepiness, cognitive load, and stress. A univariate data source often presents challenges, since features from a single source or one just aspect of the feature are not entirely reliable; Therefore, multivariate information requires accurate driver state detection. Often, driver states are a subjective experience, in which other contextual data plays a vital role. Thus, the implication of incorporating contextual information in the classification scheme is presented in this thesis work. Although there are several commonalities, physiological signals are modulated differently in different driver states; Hence, multivariate data could help detect multiple driver states simultaneously – for example, cognitive load detection when a person is under the influence of different levels of stress.
  •  
8.
  • Begum, Shahina, 1977- (författare)
  • A Case-Based Reasoning System for the Diagnosis of Individual Sensitivity to Stress in Psychophysiology
  • 2009
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Increased stress is a continuing problem in our present world. Especiallynegative stress could cause serious health problems if it remainsundiagnosed/misdiagnosed and untreated. In the stress medicine, clinicians’measure blood pressure, ECG, finger temperature and breathing rate during anumber of exercises to diagnose stress-related disorders. One of the physiologicalparameters for quantifying stress levels is the finger temperature that helps theclinicians in diagnosis and treatment of stress. However, in practice, it is difficultand tedious for a clinician to understand, interpret and analyze complex, lengthysequential sensor signals. There are only few experts who are able to diagnose andpredict stress-related problems. A system that can help the clinician in diagnosingstress is important, but the large individual variations make it difficult to build sucha system.This research work has attempted to investigate several artificial Intelligencetechniques to develop an intelligent, integrated sensor system for diagnosis andtreatment plan in the Psychophysiological domain. To diagnose individualsensitivity to stress, case-based reasoning is applied as a core technique to facilitateexperience reuse by retrieving previous similar cases. Further, fuzzy techniques arealso employed and incorporated into the case-based reasoning system to handlevagueness, uncertainty inherently existing in clinicians reasoning process. Thevalidation of the approach is based on close collaboration with experts andmeasurements from twenty four persons used as reference.Thirty nine time series from these 24 persons have been used to evaluate theapproach (in terms of the matching algorithms) and an expert has ranked andestimated similarity which shows a level of performance close to an expert. Theproposed system could be used as an expert for a less experienced clinician or as asecond option for an experienced clinician to their decision making process.
  •  
9.
  • Begum, Shahina, 1977- (författare)
  • A Personalised Case-Based Stress Diagnosis System Using Physiological Sensor Signals
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Stress is an increasing problem in our present world. It is recognised that increased exposure to stress may cause serious health problems if undiagnosed and untreated. In stress medicine, clinicians’ measure blood pressure, Electrocardiogram (ECG), finger temperature and respiration rate etc. during a number of exercises to diagnose stress-related disorders. However, in practice, it is difficult and tedious for a clinician to understand, interpret and analyze complex, lengthy sequential sensor signals. There are few experts who are able to diagnose and predict stress-related problems. Therefore, a system that can help clinicians in diagnosing stress is important. This research work has investigated Artificial Intelligence techniques for developing an intelligent, integrated sensor system to establish diagnosis and treatment plans in the psychophysiological domain. This research uses physiological parameters i.e., finger temperature (FT) and heart rate variability (HRV) for quantifying stress levels.  Large individual variations in physiological parameters are one reason why case-based reasoning is applied as a core technique to facilitate experience reuse by retrieving previous similar cases. Feature extraction methods to represent important features of original signals for case indexing are investigated. Furthermore, fuzzy techniques are also employed and incorporated into the case-based reasoning system to handle vagueness and uncertainty inherently existing in clinicians’ reasoning. The evaluation of the approach is based on close collaboration with experts and measurements of FT and HRV from ECG data. The approach has been evaluated with clinicians and trial measurements on subjects (24+46 persons). An expert has ranked and estimated the similarity for all the subjects during classification. The result shows that the system reaches a level of performance close to an expert in both the cases. The proposed system could be used as an expert for a less experienced clinician or as a second opinion for an experienced clinician to supplement their decision making tasks in stress diagnosis.
  •  
10.
  • Begum, Shahina, et al. (författare)
  • Development of a Stress Questionnaire : A Tool for Diagnosing Mental Stress
  • 2010
  • Rapport (övrigt vetenskapligt/konstnärligt)abstract
    • Stress and its relation with health, behavioral and environmental factors are known today. The stress questionnaire is a scientific screening instrument to understand individual’s causes of stress in different parts of life e.g. in the work place and at home. The 38-item stress questionnaire (SQ) is developed to assess the appraisal of stress personally experienced in a patient’s life. This questionnaire cannot diagnose any illness or psychological disorder. However it can be a helpful tool for developing the individual stress management plan by assessing data about the current demands of individual’s life and work.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 27
Typ av publikation
doktorsavhandling (10)
licentiatavhandling (5)
bokkapitel (4)
annan publikation (3)
konferensbidrag (3)
rapport (1)
visa fler...
tidskriftsartikel (1)
visa färre...
Typ av innehåll
Författare/redaktör
Xiong, Ning (6)
Ahmed, Mobyen Uddin (6)
Begum, Shahina, 1977 ... (6)
Begum, Shahina (5)
Funk, Peter, Profess ... (5)
visa fler...
Funk, Peter, 1957- (5)
Ahmed, Mobyen Uddin, ... (4)
Nilsson, Markus (3)
Olsson, Erik (3)
Leon, Miguel (2)
Ahlström, Christer (2)
Ahmed, Mobyen Uddin, ... (2)
von Schéele, Bo (2)
Barua, Shaibal, 1982 ... (2)
Funk, Peter, Docent (2)
Rahman, Hamidur, Doc ... (2)
Zenlander, Yigen (2)
Olsson, Tomas (1)
Ahmed, Mobyen Uddin, ... (1)
Jackson, Mats (1)
Jackson, Mats, Profe ... (1)
Bengtsson, Marcus (1)
Bengtsson, Marcus, 1 ... (1)
Schéele, Bo von (1)
Shahsavar, Nosrat, D ... (1)
Barua, Shaibal (1)
Scheele, Bo von, Pro ... (1)
Xiong, Ning, Dr. (1)
Marling, Cindy, Asso ... (1)
Dougherty, Mark, pro ... (1)
Peña, Jose, Associat ... (1)
Begum, Shahina, Asso ... (1)
Wiratunga, Nirmalie, ... (1)
Lindgren, Helena, Dr ... (1)
Montani, Stefania, A ... (1)
Deleryd, Mats, Adjun ... (1)
Klefsjö, Bengt, Prof ... (1)
Johansson, Ronnie (1)
Khan, Taha, 1983- (1)
Olsson, Erik M. G. (1)
Loutfi, Amy, Docent (1)
Westin, Jerker, lekt ... (1)
Begum, Shahina, lekt ... (1)
Klein, Gunnar, profe ... (1)
Xiong, Ning, Profess ... (1)
Sandström, Kristian, ... (1)
Sollenborn, Mikael (1)
Nilsson, Markus, 197 ... (1)
Bichindaritz, Isabel ... (1)
visa färre...
Lärosäte
Uppsala universitet (1)
Jönköping University (1)
RISE (1)
Högskolan Dalarna (1)
Språk
Engelska (27)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (15)
Teknik (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy