SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "db:Swepub ;spr:chi;conttype:(refereed);pers:(Wang Mei)"

Sökning: db:Swepub > Kinesiska > Refereegranskat > Wang Mei

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gao, Aiping, et al. (författare)
  • Asymmetric oxidation of sulfides catalyzed by vanadium(IV) complexes of dibromo- and diiodo-functionalized chiral Schiff bases
  • 2006
  • Ingår i: Cuihuà xuébào. - 0253-9837 .- 1872-2067. ; 27:8, s. 743-748
  • Tidskriftsartikel (refereegranskat)abstract
    • The catalyst system of VO(acac)(2) and Schiff base ligands derived from 3,5-dibromo- or 3,5-diiodosalicylaldehyde and inexpensive chiral amino alcohols was prepared. This catalyst displayed good yields and moderate to high enantioselectivity for the asymmetric oxidation of aryl methyl sulfides at room temperature when 1% catalyst (VO(acac)(2)/ligand molar ratio of 1: 2) and H2O2 Oxidant were used. The ligands derived from ( S)valinol exhibited considerably higher enantioselectivity than those ligands derived from ( S)-phenylalaninol and (R)-leucinol. The enantiomeric excess values were improved up to 88% for methyl phenyl sulfoxide and 92% for methyl p-bromophenyl sulfoxide by slow dropwise addition of H2O2 with the ligand prepared from 3 15-diiodosalicylaldehyde and (s)-valinol. The present study showed that the catalytic efficiency of VO(acac)(2) /Schiff base systems could not be improved by the addition of carboxylic acids or carboxylate salts.
  •  
2.
  • Xin, Yan-Bo, et al. (författare)
  • Research progress of hydrogen tunneling in two-dimensional materials
  • 2017
  • Ingår i: Wuli xuebao. - : CHINESE PHYSICAL SOC. - 1000-3290. ; 66:5
  • Forskningsöversikt (refereegranskat)abstract
    • One-atom-thick material such as graphene, graphene derivatives and graphene-like materials, usually has a dense network lattice structure and therefore dense distribution of electronic clouds in the atomic plane. This unique structure makes it have great significance in both basic research and practical applications. Studies have shown that molecules, atoms and ions are very difficult to permeate through these above-mentioned two-dimensional materials. Theoretical investigations demonstrate that even hydrogen, the smallest in atoms, is expected to take billions of years to penetrate through the dense electronic cloud of graphene. Therefore, it is generally considered that one-atom-thin materialis impermeable for hydrogen. However, recent experimental results have shown that the hydrogen atoms can tunnel through graphene and monolayer hexagonal boron nitride at room temperature. The existence of defects in one-atomthin material can also effectively reduce the barrier height of the hydrogen tunneling through graphene. Controversy exists about whether hydrogen particles such as atoms, ions or hydrogen molecules can tunnel through two-dimensional materials, and it has been one of the popular topics in the fields of two-dimensional materials. In this paper, the recent research progressof hydrogen tunneling through two-dimensional materials is reviewed. The characteristics of hydrogen isotopes tunneling through different two-dimensional materials are introduced. Barrier heights of hydrogen tunneling through different graphene and graphene-like materials are discussed and the difficulties in its transition are compared. Hydrogen cannot tunnel through the monolayer molybdenum disulfide, only a little small number of hydrogen atoms can tunnel hrough graphene and hexagonal boron nitride, while hydrogen is relatively easy to tunnel through silicene and phosphorene. The introduction of atomic defects or some oxygen-containing functional groups into the two-dimensional material is discussed, which can effectively reduce the barrier height of the hydrogen tunneling barrier. By adding the catalyst and adjusting the temperature and humidity of the tunneling environment, the hydrogen tunneling ability can be enhanced and the hydrogen particles tunneling through the two-dimensional material can be realized. Finally, the applications of hydrogen tunneling through two-dimensional materials in ion-separation membranes, fuel cells and hydrogen storage materials are summarized. The potential applications of hydrogen permeable functional thin film materials, lithium ion battery electrode materials and nano-channel ions in low energy transmission are prospected. The exact mechanism of hydrogen tunneling through two-dimensional material is yet to be unravelled. In order to promote these applications and to realize large-scale production and precision machining of these two-dimensional materials, an in-depth understanding of the fundamental questions of the hydrogen tunneling mechanism is needed. Further studies are needed to predict the tunneling process quantitatively and to understand the effects of catalyst and the influences of chemical environments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy