SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) ;srt2:(1980-1989);srt2:(1981);pers:(Siesjö Bo)"

Sökning: hsv:(MEDICIN OCH HÄLSOVETENSKAP) hsv:(Klinisk medicin) > (1980-1989) > (1981) > Siesjö Bo

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Nilsson, B, et al. (författare)
  • Cerebrovascular response during and following severe insulin-induced hypoglycemia: CO2-sensitivity, autoregulation, and influence of prostaglandin synthesis inhibition
  • 1981
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772. ; 111:4, s. 455-463
  • Tidskriftsartikel (refereegranskat)abstract
    • The objective of the present experiments was to study mechanisms governing cerebrovascular responses during severe hypoglycemia, and in the posthypoglycemic recovery period. To that end, lightly anesthetized (70% N2O) and artificially ventilated rats were injected with insulin so as to abolish spontaneous EEG activity for 15 or 30 min ("coma"). In separate animals, recovery was induced by glucose administration. Previous experiments have shown that in normo- or moderately hypertensive animals hypoglycemic coma is accompanied by a relatively marked increase in cerebral blood flow (CBF), and that a delayed hypoperfusion develops in the recovery period. The present results demonstrate that oxygen supply is in excess of the demands during coma, and falls below control during recovery. During hypoglycemic coma, the CO2 response of the circulation was retained but autoregulation was lost. In the recovery period, both CO2 response and autoregulation were lost. Pretreatment with indomethacin was introduced in order to evaluate the possible influence of fatty acid cyclo-oxygenase products on the pattern of CBF changes. Measurements of local cerebral blood flow (1-CBF) showed that, in the majority of structures analysed, indomethacin failed to modulate the changes in CBF. It is concluded that alterations in cerebrovascular tone and loss of autoregulation induce flow changes that may influence substrate and oxygen availability during hypoglycemia. The pronounced decrease in CBF and the loss of autoregulation and CO2-response in the post-hypoglycemic period may influence functional, metabolic and morphological recovery. The 1-CBF findings indicate that neither the increase in CBF during hypoglycemia nor the reduction in flow in the posthypoglycemic period are mediated by mechanisms related to prostaglandin metabolism.
  •  
2.
  • Agardh, Carl-David, et al. (författare)
  • Hypoglycemic brain injury: metabolic and structural findings in rat cerebellar cortex during profound insulin-induced hypoglycemia and in the recovery period following glucose administration
  • 1981
  • Ingår i: Journal of Cerebral Blood Flow and Metabolism. - 1559-7016. ; 1:1, s. 71-84
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous results have shown that severe, prolonged hypoglycemia leads to neuronal cell damage in, among other structures, the cerebral cortex and the hippocampus but not the cerebellum. In order to study whether or not this sparing of cerebellar cells is due to preservation of cerebellar energy stores, hypoglycemia of sufficient severity to abolish spontaneous EEG activity was induced for 30 and 60 min. At the end of these periods of hypoglycemia, as well as after a 30 min recovery period, cerebellar tissue was sampled for biochemical analyses or for histopathological analyses or for histopathological analyses by means of light and electron microscopy. After 30 min of hypoglycemia. the cerebellar energy state, defined in terms of the phosphocreatine, ATP, ADP, and AMP concentrations, was better preserved than in the cerebral cortex. After 60 min, gross deterioration of cerebellar energy state was observed in the majority of animals, and analyses of carbohydrate metabolites and amino acids demonstrated extensive consumption of endogenous substrates. In spite of this metabolic disturbance, histopathologic alterations were surprisingly discrete. After 30 min, no clear structural changes were observed. After 60 min, only small neurons in the molecular layer (basket cells) were affected, while Purkinje cells and granule cells showed few signs of damage. The results support our previous conclusion that the pathogenesis of cell damage in hypoglycemia is different from that in hypoxia-ischemia and indicate that other mechanisms than energy failure must contribute to neuronal cell damage in the brain.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Agardh, Carl-David (3)
Kalimo, H (1)
Ingvar, M (1)
Olsson, Y (1)
Nilsson, B (1)
Lärosäte
Lunds universitet (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (3)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy